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Outline

▶ Linear models

▶ Generalized linear mixed models

▶ Hierarchical models

▶ Missing data and censoring
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Bayesian one-sample (i.e., paired) t-test

▶ Say Y1, ...,Yn ∼ Normal(µ, σ2)

▶ Typically Yi is the difference of a pair of measurements,
e.g., the post- minus pre-test for subject i

▶ Therefore the interest is to compare µ to zero

▶ We will consider two cases: σ2 known and σ2 unknown
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Bayesian one-sample (i.e., paired) z-test
▶ Under the Jeffreys’ prior π(µ) = 1 with fixed σ,

µ|Y, σ ∼ Normal
(

Ȳ ,
σ2

n

)
▶ Therefore the posterior mean is the sample mean,

E(µ|Y) = Ȳ

▶ The 95% credible set is the 95% confidence interval

Ȳ ± 1.96
σ√
n

▶ For the test of H0 : µ ≤ 0 versus H1 : µ > 0,

Prob(H0|Y) = Prob(µ ≤ 0|Y) = Φ(
√

nȲ/σ)

is the frequentist p-value
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Bayesian one-sample (i.e., paired) t-test

▶ When σ2 is unknown, the Jeffreys’ prior is

π(µ, σ2) ∝
(

1
σ2

)3/2

▶ The marginal posterior integrating over uncertainty in σ2 is

µ|Y ∼ tn

(
Ȳ ,

σ̂2

n

)
where σ̂2 =

∑n
i=1(Yi − Ȳ )2/n

▶ This is very similar to the frequentist t-test, except that the
degrees of freedom is n rather than n − 1

▶ This is the effect of the prior
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Bayesian two-sample z-test

▶ Say the n1 observations from group 1 are

Yi ∼ Normal(µ, σ2)

are the n2 observations from group 2 are

Yi ∼ Normal(µ+ δ, σ2)

▶ The goal is to compare δ to zero

▶ With σ2 known and Jeffrey’s prior π(µ, δ) = 1,

δ|Y, σ2 ∼ Normal
(

Ȳ2 − Ȳ1,
σ2

n1
+

σ2

n2

)
and the results are identical to the two-sample z-test
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Bayesian two-sample t-test
▶ When σ2 is unknown, the Jeffreys’ prior is

π(µ, δ, σ2) ∝
(

1
σ2

)2

▶ The marginal posterior integrating over uncertainty in σ2

and µ is

δ|Y ∼ tn

(
Ȳ2 − Ȳ1,

σ̂2

n1
+

σ̂2

n2

)
where the pooled variance estimator is

σ̂2 =

 n1∑
i=1

(Yi − Ȳ1)
2 +

n2∑
i=n1+1

(Yi − Ȳ2)
2

 /n

▶ This resembles the frequentist t-test, except that due to the
prior the DOF is n = n1 + n2 rather than n − 2
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Bayesian regression

▶ The likelihood remains

Yi ∼ Normal(β0 + Xi1β1 + ...+ Xipβp, σ
2)

independent for i = 1, ...,n observations

▶ As with a least squares analysis, it is crucial to verify this is
appropriate using qq-plots, added variable plots, etc.

▶ A Bayesian analysis also requires priors for β and σ

▶ We will focus on prior specification since this piece is
uniquely Bayesian.
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Priors

▶ For the purpose of setting priors, it is helpful to standardize
both the response and each covariate to have mean zero
and variance one.

▶ Many priors for β have been considered:
1. Improper priors

2. Gaussian priors

3. Bayesian lasso

4. Many, many more...
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Improper priors

▶ With σ fixed, the Jeffreys’ prior is flat p(β) = 1

▶ This is improper, but the posterior is proper under the
same conditions required by least squares

▶ If σ is known then

β|Y ∼ Normal
[
β̂OLS, σ

2(XT X)−1
]

▶ Therefore, the results should be similar to least squares

▶ How are they different?
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Improper priors

▶ Of course we rarely know σ

▶ A conjugate uninformative prior is

σ2 ∼ InvGamma(a,b)

with a and b set to be small, say a = b = 0.01.

▶ In this case the posterior of β follows a multivariate t
centered on β̂OLS

▶ Again, the results are similar to OLS
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Improper priors

▶ The objective Bayes Jeffreys prior is

p(β, σ2) =

(
1
σ2

)p/2+1

which is the inverse gamma prior with a = p/2 and b → 0

▶ This gives posterior (marginal over σ2)

β|Y ∼ tn
(
β̂OLS, σ̂

2(XT X)−1
)

where σ̂2 = (Y − Xβ̂OLS)
T (Y − Xβ̂OLS)/n

▶ The posterior is proper in the same situations that the least
squares solution exists
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Multivariate normal prior

▶ Another common prior for is Zellner’s g-prior

β ∼ Normal
[
0,

σ2

g
(XT X)−1

]
▶ This prior is proper assuming X is full rank

▶ The posterior mean is

1
1 + g

β̂OLS

▶ This shrinks the least estimate towards zero

▶ g controls the amount of shrinkage

▶ g = 1/n is common, and called the unit information prior
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Univariate Gaussian priors

▶ If there are many covariates or the covariates are collinear,
then β̂OLS is unstable

▶ Independent priors can counteract collinearity

βj ∼ Normal(0, σ2/g)

independent over j

▶ The posterior mode is

argmin
β

n∑
i=1

(Yi − µi)
2 + g

p∑
j=1

β2
j

▶ In classical statistics, this is known as the ridge regression
solution and is used to stabilize the least squares solution
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BLASSO

▶ An increasingly-popular prior is the double exponential or
Bayesian LASSO prior

▶ The prior is βj ∼ DE(τ) which has PDF

f (β) ∝ exp

(
−|β|

τ

)
▶ The square in the Gaussian prior is replaced with an

absolute value

▶ The shape of the PDF is thus more peaked at zero (next
slide)

▶ The BLASSO prior favors settings where there are many βj
near zero and a few large βj

▶ That is, p is large but most of the covariates are noise
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BLASSO
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BLASSO

▶ The posterior mode is the LASSO solution

argmin
β

n∑
i=1

(Yi − µi)
2 + g

p∑
j=1

|βj |

▶ It is popular because it adds stability by shrinking estimates
towards zero, and also sets some coefficients to zero

▶ Covariates with coefficients set to zero can be removed

▶ Therefore, LASSO performs variables selection and
estimation simultaneously

▶ BLASSO provides uncertainty about βj and avoids picking
a single g
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BLASSO computation

▶ Bayesian LASSO can be fit using Gibbs sampling with the
introduction of auxiliary variables

▶ Derivation:
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Summarizing the results

▶ The standard summary is a table with marginal means and
95% intervals for each βj

▶ This becomes unwieldy for large p

▶ Picking a subset of covariates is a crucial step in a linear
regression analysis

▶ We will discuss this later in the course

▶ Common methods include cross-validation, information
criteria, and stochastic search
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Predictions

▶ Say we have a new covariate vector Xnew and we would
like to predict the corresponding response Ynew

▶ A plug-in approach would fix β and σ at their posterior
means β̂ and σ̂ to make predictions

Ynew |β̂, σ̂ ∼ Normal(Xnew β̂, σ̂
2)

▶ However this plug-in approach suppresses uncertainty
about β and σ

▶ Therefore these prediction intervals will be slightly too
narrow leading to undercoverage
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Posterior predictive distribution (PPD)

▶ We should really account for all uncertainty when making
predictions, including our uncertainty about β and σ

▶ We really want the PPD

p(Ynew |Y) =

∫
f (Ynew ,β, σ|Y)dβdσ

=

∫
f (Ynew |β, σ)f (β, σ|Y)dβdσ

▶ Marginalizing over the model parameters accounts for their
uncertainty

▶ The concept of the PPD applies generally (e.g., logistic
regression) and means the distribution of the predicted
value marginally over model parameters
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Posterior predictive distribution (PPD)

▶ MCMC naturally gives draws from Ynew ’s PPD

▶ For MCMC iteration t we have β(t) and σ(t)

▶ For MCMC iteration t we sample

Y (t)
new ∼ Normal(Xβ(t), σ(t)2

)

▶ Y (1)
new , ...,Y

(S)
new are samples from the PPD

▶ This is an example of the claim that “Bayesian methods
naturally quantify uncertainty”
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Outline

▶ Linear models

▶ Generalized linear mixed models

▶ Hierarchical models

▶ Missing data and censoring
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Generalized linear models (GLMs)

▶ GLMs extend linear models to non-Gaussian data

▶ A general formulation is

g[E(Yi |β)] = ηi = Xiβ

▶ The linear predictor is ηi

▶ The link function g projects the mean from its support to R
where modeling in unconstrained

▶ For example, logistic regression takes
g(x) = log[x/(1 − x)]
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Steps to selecting a Bayesian GLM

1. Identify the support of the response distribution

2. Select the likelihood by picking a parametric family of
distributions with this support

3. Choose a link function g that transforms the range of
parameters to the whole real line

4. Specify a linear model on the transformed parameters

5. Select priors for the regression coefficients
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Logistic regression (LR)

▶ The model for binary responses is

Prob(Yi = 1|β) = exp(Xiβ)

1 + exp(Xiβ)

▶ The coefficient βj is interpreted as the increase in log odds
of Yi if Xj increases by one with all other covariates fixed

▶ Bayesian logistic regression requires a prior for β

▶ All of the prior we have discussed for linear regression
(Zellner, BLASSO, etc) apply

▶ The full conditional distributions are no longer conjugate
but you can use Metropolis sampling (MCMClogit)
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Logistic regression (LR)

▶ LR can be used to compare two proportions

▶ Say population j ∈ {1,2} has success probability πj

▶ Then set Xi = I(observation i is from population 2), and

logit [Prob(Yi = 1|β)] = β1 + Xiβ2

▶ The populations have the same probability if β2 = 0

▶ How to pick priors for βj that resemble the Jeffrey
Beta(1/2,1/2) priors for the πj?

▶ Prior predictive check are a simple/informal method
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Probit regression

▶ The model for binary responses is

Prob(Yi = 1|β) = Φ(Xiβ) (1)

where Φ is the standard normal CDF

▶ The interpretation of β is not as clear as in LR

▶ The model is equivalent to a truncated normal model

▶ Say there are latent outcomes

Zi ∼ Normal(Xiβ, σ
2)

▶ Rather than observing Zi , we observe only Yi = I(Zi > 0)

▶ For identifiability we set σ = 1, giving (1)
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Probit regression computation

▶ Exact Gibbs sampling can be achieved1

▶ Derivation:

1https://www.jstor.org/stable/2290350
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Logistic regression computation

▶ Exact Gibbs sampling can be achieved using the
Polya-Gamma sampler 2

▶ This also applies to negative binomial regression for count
data

▶ Derivation:

2https://www.tandfonline.com/doi/abs/10.1080/01621459.
2013.829001
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Generalized linear mixed models (GLMMs)

▶ GLMs assume the observations are independent

▶ This is invalid if data are grouped

▶ For example, n classrooms each have m students

▶ It might be reasonable to assume the classrooms are
independent, but the students within a class are likely
dependent

▶ Random effects are a natural way to account for this
dependence
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Generalized linear mixed models (GLMMs)

▶ GLMMs extend GLMs to correlated data

▶ A general formulation is

g[E(Yi |β,u)] = ηi = Xiβ + Ziu

▶ The random effects distribution is u ∼ Normal(0,Σ)

▶ Given u, the observations are independent, but marginal
over u (e.g., via MCMC) they are correlated

▶ The correlation between linear predictors is

Cor(Ziu,Zju) = ZiΣZT
j

▶ This induces correlation between observations, although
expressions for Cor(Yi ,Yj) are complicated
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GLMMs example #1

▶ Yij ∈ {0,1} is the results of attempt j by kicker i

▶ The probability of success depends on distance, Xij

▶ To account for dependence we add a random kicker effect,
ui

iid∼ Normal(0, σ2)

▶ The random effects logistic regression model is

logit
[
Prob(Yij = 1|β,ui)

]
= β0 + Xijβ1 + ui

▶ The vector Zij is zero everywhere except a one in element i

▶ The random effect distribution is u ∼ Normal(0, σ2I)
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GLMMs example #2

▶ Yi ∈ {0,1, ...} is the number of cancer cases in county i

▶ The model is
Yi |λi ∼ Poisson(Niλi)

where Ni is the population of county i

▶ The relative risks are modeled as

log(λi) = β0 + ui

where u ∼ Normal(0,Σ) (Z is the identify matrix)

▶ The spatial covariance matrix Σ has (i , j) element

Σij = σ2 exp(−dijϕ)

where dij is the distance between counties i and j
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Confusion about random effects

▶ MCMC does not distinguish between random effects and
other parameters

▶ For example, β, u and σ2 are all treated as random in a
Bayesian analysis

▶ However, ui is called a “random” effect because it
represents one random draw from a population distribution

▶ Often for GLMMs, we are less interested in particular ui
and more interested in the population distribution via Σ
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Bayesian analysis of GLMMs

▶ There are not really any special techniques needed to
implement a Bayesian GLMM

▶ Gibbs and Metropolis can be used

▶ As in all analyses, we require priors

▶ The main advantages of Bayesian implementation is the
ability to incorporate prior information and account for
uncertainty in the variance components

▶ For example, MLE analyses of GLMMs use plug-in
estimators of the variance components and rely on normal
approximations for the fixed and random effects
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Outline

▶ Linear models

▶ Generalized linear mixed models

▶ Hierarchical models

▶ Missing data and censoring
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Hierarchical models

▶ Hierarchical modeling provides a framework for building
complex and high-dimensional models from simple and
low-dimensional building blocks

▶ Of course, it is possible to analyze these models using
non-Bayesian methods

▶ However, this modeling framework is popular in the
Bayesian literature because MCMC is conducive to
hierarchical models

▶ Both “divide and conquer” big problems by splitting them
into a series of smaller problems in the same way
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We build models!

39 / 70



Hierarchical models

Often Bayesian models can we written in the following layers of
the hierarchy

1. Data layer: [Y|θ,α] is the likelihood for the observed data
Y given the model parameters

2. Process layer: [θ|α] is the model for the parameters θ
that define the latent data generating process

3. Prior layer: [α] prior for hyperparameters
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Epidemiology example - Data layer

▶ Let St and It be the number of susceptible and infected
individuals in a population, respectively, at time t

▶ The data Yt is the number of observed cases at time t

▶ The data layer models our ability to measure the process It

▶ Data layer: Yt |It ∼ Binomial(It ,p)

▶ This assumes no false positives and false negative
probability p
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Epidemiology example - Process layer

▶ Scientific understanding of the disease is used to model
disease propagation

▶ We might select the simple Reed-Frost model

Process layer: It+1 ∼ Binomial
[
St ,1 − (1 − q)It

]
St+1 = St − It+1

▶ This assumes all infected individuals are removed from the
population before the next time step

▶ Also that q is the probability of a non-infected person
coming into contact with and contracting the disease from
an infected individual
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Epidemiology example - Prior layer

▶ The epidemiological process-layer model expresses the
disease dynamics up to a few unknown parameters

▶ The Bayesian model is completed using priors, say,

▶ Prior layer:

I1 ∼ Poisson(λ1)

S1 ∼ Poisson(λ2)

p,q ∼ beta(a,b)
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When to stop adding layers?

▶ In the previous example a, b, λ1 and λ2 are fixed

▶ But we will have uncertainty about the correct value

▶ Maybe replace a fixed value with another layer, say
a ∼ Uniform(0, θ)?

▶ Then maybe θ ∼ Exponential(ξ), ξ ∼ Uniform(0, η), etc.

▶ Rule of thumb: Be careful assigning priors to parameters in
layers without replication.

▶ For example, even if we knew p exactly this would be just
one value and we couldn’t hope to estimate the
parameters of its beta distribution.
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Directed acyclic graphs (DAGs)

▶ A DAG is a graphical representation of a hierarchical model

▶ DAGS sometimes go by the name Bayesian networks

▶ Each observation and parameter is a node

▶ An arrow for X to Y means that the conditional distribution
of Y depends on X

▶ “Directed” means that arrows only go one way

▶ Acyclic means there are no cycles, e.g.,

X → Y → Z → X
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Epidemiology example - DAG

Prior layer

Process layer

Data layer

Y2 Y3 Y4 …

I2, S2 I3, S3 I4, S4
…

I1, S1, p, q

λ1, λ2, a, b
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Directed acyclic graphs (DAGs)

▶ Building models this way ensures we will always have a
valid joint distribution

▶ For example, say we need to specify the joint distribution of
(X ,Y ,Z )

▶ Any joint distribution can be written as

f (X ,Y ,Z ) = f (X )f (Y |X )f (Z |X ,Y )

▶ This is a fully-connected DAG

▶ Ad-hoc constructions like

f (X ,Y ,Z ) = f (X |Z )f (Y |X )f (Z |X ,Y )

may or may not give a valid joint PDF
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Hierarchical models and MCMC

▶ Consider the classic one-way random effects model:

Yij ∼ N(θi , σ
2) and θi ∼ N(µ, τ2)

where Yij is the j th replicate for unit i and α = (µ, σ2, τ2)
has an uninformative prior

▶ This hierarchy can be written using a directed acyclic graph
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Random effects example - DAG

Prior layer

Process layer

Data layer

Y11, …, Y14 Y21, …, Y24 … Yn1, …, Yn4

θ1 θ2 … θn

µ, σ2, τ2

Hyperpriors
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Hierarchical models and MCMC
▶ MCMC is efficient in this case even if the number of

parameter or levels of the hierarchy is large
▶ You only need to consider “connected nodes” when you

update each parameter
▶ For example, consider the random effect θ1

p(θ1|·) ∝

∏
i,j

f (Yij |θi , τ
2)

[
n∏

i=1

π(θi |α)

]
π(α)

∝

∏
j

f (Y1j |θ1, τ
2)

π(θ1|α)

▶ This only includes data for subject 1 and the prior for θ1, so
our old normal/normal conjugacy rules apply

▶ Each of these updates is a draw from a standard
one-dimensional normal or inverse gamma
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Classes of hierarchical models

▶ Most hierarchical models we fit could be classified as
multi-level statistical models

▶ Here we have different parameters for different
levels/groups

▶ The distribution of parameters across groups follows a
random-effects model

▶ The GEV/random slopes model on the first exam is a good
example

▶ Another class is the mathematical/statistical model

▶ Here we quantify bias and uncertainty in a mathematical,
often differential equation, model
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Multi-level Random slopes model

▶ Let Yij be the j th observation for subject i

▶ As an example, consider the data plotted on the next slide
were Yij is the bone density for child i at age Xj .

▶ Here we might specify a different regression for each child
to capture variability over the population of children:

Yij ∼ Normal(γ0i + Xiγ1i , σ
2)

▶ γ i = (γi0, γi1)
T controls the growth curve for child i

▶ These separate regression are tied together in the prior,
γ i ∼ Normal(β,Σ), which borrows strength across children

▶ This is a linear mixed model: γ i are random effects specific
to one child and β are fixed effects common to all children
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Random slopes example - DAG

Prior layer

Process layer

Data layer

Y11, …, Y14 Y21, …, Y24 … Yn1, …, Yn4

γ1 γ2 … γn

β, Σ

Hyperpriors
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Mathematical/statistical models

▶ Mathematicians and engineers often build models using
differential equations

▶ Examples: weather/climate models, resilience of a airplane
wing to strain, strength of a bridge

▶ These models often have parameters that are known well,
e.g., response of steel to temperature

▶ But some parameters are known with less precision:
response of hurricane intensity to increased SST

▶ Also, all models have bias, most observations have bias
and/or error

▶ Embedding the mathematical model in a statistical model
gives uncertainty quantification (UQ)
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Mathematical/statistical models

▶ Let g(X,θ) be a mathematical model, e.g., the solution to
differential questions

▶ The design variables are X and the unknown parameters
are θ

▶ Example: g(X, θ) the true air pollution at a sensor

▶ Example: X is the power plant structure and the wind field

▶ Example: θ is the true emission from the power plant
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Mathematical/statistical models

Now say we observed n observations Yi under conditions Xi

▶ Can we estimate θ?

▶ Can we estimate model bias?

▶ Can we predict (with uncertainty) Y for a new X?

▶ Can we find the optimal X?

57 / 70



Mathematical/statistical models

▶ A common model3 is

Yi = g(Xi ,θ) + δ(Xi) + εi

▶ The parameters θ often have informative priors

▶ The discrepancy term δ captures systematic bias, and can
be modeling with splines or a Gaussian processes

▶ The measurement error term is εi
iid∼ Normal(0, σ2)

▶ This would be straightforward, except that often evaluation
g takes hours or days

3https://rss.onlinelibrary.wiley.com/doi/10.1111/
1467-9868.00294
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Mathematical/statistical models

Examples
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Outline

▶ Linear models

▶ Generalized linear mixed models

▶ Hierarchical models

▶ Missing data and censoring
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Missing data models

▶ We will deal with missing data in the linear regression
context, but the ideas apply to all models

▶ The model is

Yi ∼ Normal(β0 + β1Xi1 + ...+ βpXip, σ
2)

▶ Either Yi or elements of Xij can be missing

▶ We will study separately the case of missing responses
and missing covariates
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Missing responses

▶ If the response is missing this is essentially a prediction
problem

▶ We obtain samples from the PPD of Yi

▶ At each MCMC iteration we simply draw

Yi ∼ Normal(β0 + β1Xi1 + ...+ βpXip, σ
2)

▶ This distribution accounts for random error as well as
uncertainty in the model parameters

▶ For the other updates the data are essentially complete

▶ If only responses are missing, can we delete them for the
purpose of estimating β?
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Censored data

▶ Censored data often arise in survival analysis

▶ For example, Yi is the time until an event for subject i

▶ If subjects are only monitored until time T , patients that do
not have an event at the end of the study are censored and
you know only that Yi > T

▶ Another example is a detection limit so that all
observations between zero and detection limit T are only
know to be in the interval (0,T )
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Censored data

▶ Handling censored data is really similar to missing data

▶ For example, if Yi is censored and known be at least T ,
you make a draw from its PPD but restricted to (T ,∞)

▶ Given the imputed censored observation the remaining
analysis proceeds as if the data are complete

▶ These ideas can also be used in modeling such as tobit
and probit regression (see examples)
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Missing covariates

▶ Now say all responses are observed, but a some
covariates are missing

▶ The simplest approach is imputation, e.g., just plug in the
sample mean of the covariate for the missing values

▶ This doesn’t account for uncertainty in the imputations

▶ Bayesian methods handle this well using MCMC
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Missing covariates

▶ The main idea is to treat the missing values as unknown
parameters in the Bayesian model

▶ Unknown parameters need priors, so missing
Xi = (Xi1, ...,Xip)

T must have priors such as

Xi ∼ Normal(µX ,ΣX )

▶ Assumptions about missing data:
▶ Missing status is independent of Y and X

▶ Covariates are Gaussian
▶ There are ways to relax both assumptions, but it becomes

complicated
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Missing covariates

▶ Of course if the prior is way off, the results will be invalid

▶ For example, if in reality the data are not missing at
random the Bayesian model will likely give bad results

▶ Example of non-random missingness:

▶ If specified correctly, the model will lead to inference for β
that properly accounts for uncertainty about the missing
data
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Hierarchical linear regression model with missing data

▶ Yi |Xi , β, σ
2 ∼ Normal(XT

i β, σ
2)

▶ Xi |µ,Σ ∼ Normal(µ,Σ)

▶ p(β) ∝ 1

▶ σ2 ∼ InvG(0.01,0.01)

▶ µ ∼ Normal(0,1002Ip)

▶ Σ ∼ InvWishart(0.01,0.01Ip)
If some observations have missing Y and some have missing
X , can we delete those with missing Y ? Can we delete those
with missing X?
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Overview of the Gibbs sampling algorithm

▶ The full conditional of missing Yi is:

Yi |Xi , β, σ
2 ∼ Normal(XT

i β, σ
2)

▶ The full conditional of missing Xi is:

The algebra is involved, but it has the same full conditional
form as β

▶ In fact, all the full conditionals are conjugate
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Derivation
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