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Model selection

» We now have many potential models in our arsenal

» For a given dataset, how do determine whether a simple
model is sufficient or if we need to bring out the “big guns™?

» Is there a “right” model? Probably not

> A statistical model is a mathematical representation of
the system that includes errors and biases in the
observation process

» All models are simplifications of reality
» Why fit models at all?

» We want a model that is as simple as possible yet seems
to fit the data reasonably well
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Bayes factors (BF)

» In some sense BFs are the gold standard
» Say we are comparing two models, M and My
» For example, Y ~ Binomial(n, #) and the two models are
M1:0=05 and Mj5:0+#0.5
» Another example, Y1, Yo, ..., Y, is a time series and
My :Cor(Yirq,Y:) =0 and My : Cor(VYiyq, Y:) >0
» Another example,

My E(Y) = Bo+B1X and My : E(Y) = Bo+B1 X+ BaX?
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Bayes factors (BF)

>

This is really the same as hypothesis testing, and in fact
Bayes factors are the gold standard for hypothesis testing

As before we proceed by computing the posterior
probability of the two models

This require priors probabilities p(M;) and p(My)
This is not prior on a parameter, it is a prior on the model!

This approach permits statements such “Given the data we
have observed, the quadratic model is 5 times more likely
than a linear model”
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Bayes factors (BF)

» The Bayes factor for model 2 compared to model 1 is

BE — Posterior odds  p(Ma|Y)/p(M1]Y)  p(Y|M>)
Prior odds p(Mz)/p(M1) p(Y|My)

» Rule of thumb: BF > 10 is strong evidence for M,

» Rule of thumb: BF > 100 is decisive evidence for M

» In linear regression, BIC approximates the BF comparing a
model to the null model
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Example

> Y ~ Binomial(n, §) with
Mi:6=05 and MZ:Q#O.S

» p(Y|M,) is just the binomial density with 6 = 0.5
» M involves an unknown parameter 6

» This requires a prior, say 6 ~ Beta(a, b), and integration

p(Y|My) = / p(Y,0)do = / p(Y|6)p(6)dd

> See “BF Beta-binomial” in the online derivations
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BF by Y with n=20 and priora=1and b =1
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BF by Y with n =20 and priora=0.5and b=0.5
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BF by Y with n =20 and prior a =50 and b = 50
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BF by Y with n =20 and prior a=50 and b =1
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Problems with Bayes factors

» Often hard to compute the required integrals which is only
feasible for simple models

» Requires proper priors
» Can be very sensitive to priors (Lindley’s paradox)

> In most cases, | prefer computing posterior intervals from
the full model and testing by comparing these to the null
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Lindley’s paradox

» Lindley’s paradox is when Bayesian and frequentist
hypothesis tests give vastly different results

» For example, Y ~ Normal(yu, 02) with H, : 1 = 0 versus
Ha:pn#0

» The Bayesian approach requires a prior under H, say
u ~ Normal(0, 72)

» Paradox: For any Y, Prob(Hp|Y) — 0as 7 — o
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Lindley’s paradox

Derivation
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Computing Bayes factors using MCMC

» |f models can be written as nested, then MCMC can be
used to approximate model probabilities

» For example, say
M E(Y) = Bo+51X and My : E(Y) = Bo+B1X+B2X°
» Both model can be written as
E(Y) = Bo+ 1 X +7BX°
where v € {0, 1} indicates the model
» The prior on models becomes v ~ Bernoulli(0.5)

» Then Prob(y = 1|Y) = Prob(M>|Y) can be approximated
using MCMC
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Stochastic search variable selection (SSVS)

» This is the Bayesian analog of forward/backward/stepwise
variable selection

» We place a prior on all 2° models using p variable inclusion
indicators +;

» MCMC returns the approximate posterior probability of
each model

» With large p all models will have low probability and so this
requires long MCMC runs

» As with Bayesian factors, SSVS can be sensitive to priors
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Multiple testing

| 2

>

Bayesian model selection can be extended to multiple tests

Example: A study measures expression at p genetic
markers

Let 0; the difference in mean expression for cancer and
control subjects for marker j

Forj € {1, ..., p} the hypotheses are
Mj1:0;=0 versus Mj:6;#0
In addition to multiple testing, correlation based on the

markers’ position on the chromosome is a challenge
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Frequentist multiple testing criteria

» Instead of controlling error rates of individual tests, we
could consider error rates across all p tests

» Global Type | error is the probability of rejecting any of the
p tests given ¢, = O forallj € {1, ..., p}

» Global Type | error can be controlled via the threshold for
the individual tests

» Or we would conduct one global test

My f;=0forall je{1,..,p}
My : 0; #0foratleastone je {1,..,p}

» A Bayesian global test computes the BF for M versus M
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Frequentist multiple testing criteria

> In most multiple testing cases, the global null is unrealistic
» False discovery rate (FDR) control is more common

> For a given dataset and testing decision

FDP(Y) — Number of rejections where the null is true
N Number of rejections

» For a given testing procedure, its frequentist FDR is
FDR = E{P(Y)}
where the expectation is wrt Y

» The testing procedure is tuned (e.g., p-value thresholds
are set) so that FDR ~ «
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Bayesian false discovery rate (BFDR)

> Let 9; = 1if the alternative M, is true and J; = 0 otherwise

» In the Bayesian setting, 6 = (41, ..., dp) is a random variable
and MCMC gives its joint posterior distribution

» We use Bayesian decision theory to summarize ¢

» Say our decision is r; = 1 if we reject M;y in favor of M,

v

The false discovery proportion is

> 61 =)

FDP(r0) = =
]:
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Bayesian false discovery rate (BFDR

» To make the problem tractable, say our decision rule is
ri(t) = Z(reject Mjy in favor of M if 7 > t),

where 7; = Prob(d; = 1|data) = Prob(M», = 1|data)
j j j

» Given this rule, the FDP is a function only of the threshold ¢

i (1 = 4)
Zf:1 ri(t)

FDP(t,5) =
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Bayesian false discovery rate (BFDR)

» From a Bayesian perspective, the random variable in
FDP(t,6)is o

» BFDR is the posterior mean FDP(t, )
BFDR(t) = Esy{FDP(t,4)}

» Since this expectation is wrt the joint posterior of ¢ it
accounts for dependence between tests

» We can select t so that BFDR(t) ~ «

» This controls posterior FDR, not frequentist FDR, although
connections can be made !

1 Storey, 2003, The positive false discovery rate: A Bayesian interpretation and the g-value
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Model averaging

> Let’s go back to the linear regression example
My E(Y) = Bo+B1X and My : E(Y) = Bo+B1 X+ BaX?

> Say we have fit both models and found that both are about
equally likely, but that M is slightly preferred

» For prediction, ¥, we could simply take the prediction that
comes from fitting M

» But the prediction from M is likely different and nearly as
accurate

» Also, taking the prediction from My suppresses our
uncertainty about the form of the model
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Model averaging

> Let \Afk be the prediction from model My for k =1,2

» The model averaged predictor is
S\/: WS\/1 —|—(1 - W)S\/g

» It can be shown that the optimal weight w is the posterior
probability of M

» Madigan and Raftery? show that BMA gives better
prediction than any individual model

» In regression with p predictors, there are 2° models and all
model probabilities will likely be small

2https://www.jstor.org/stable/pdf/2291017.pdf
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Information criteria

>

>

Several information criteria have been proposed that do
not require fitting the model several times

Many are functions of the deviance, i.e., twice the
negative log likelihood

D(Y|8) = 2 log[/(Y|6)]

|deally, models will have small deviance

However, if a model is too complex it will have small
deviance between be unstable (over-fitting)

The Akaike information criteria has a complexity penalty
AIC = D(Y|9) +2p

where 8 is the MLE
Model with smaller A/C are preferred
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Bayesian information criteria (BIC)

» The Bayesian information criteria is similar
BIC = D(Y|6) + log(n)p
» This is motivated as an approximation to the log Bayes
factor of the model compared to the null model

» However, this is only an asymptotic (large n) approximation

» With large n the prior is irrelevant, and so this is not
satisfying to a subjective Bayesian
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Deviance information criteria (DIC)

>

>

DIC is a popular Bayesian analog of AIC or BIC
Unlike CV, DIC requires only one model fit
Unlike BF, it can be applied to complex models
However, proceed with caution

DIC really only applies when the posterior is approximately
normal, and will give misleading results when the posterior
far from normality, e.g., bimodal

DIC is also criticized for selecting overly-complex models
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Deviance information criteria (DIC)

> Let D = E[D(Y|6)|Y] be the posterior mean of the deviance
» Denote 8 as the posterior mean of 6
» The effective number of parameters is

po = D — D(Y|)
» DIC can be written like AIC,

DIC = D + pp = D(Y|8) + 2pp

» Models with small D fit the data well
» Models with small pp are simple

» We prefer models that are simple and fit well, so we select
the model with smallest DIC
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DIC

The effective number of parameters is a useful measure of
model complexity

Intuitively, if there are p parameters and we have
uninformative priors then pp ~ p

However, pp << p if there are strong priors

For example, how many free degrees of freedom do we
have with 6 ~ Beta(1, 1) versus 6 ~ Beta(1000, 1000)?

In some cases pp has a nice closed form

A few examples are worked out in “DIC” on the online
derivations
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DIC

As with AIC or BIC, we compute DIC for all models under
consideration and select the one with smallest DIC

Rule of thumb: a difference of DIC of less than 5 is not
definitive and a difference greater than 10 is substantial

As with AIC or BIC, the actual value is meaningless, only
differences are relevant

DIC can only be used to compare models with the same
likelihood
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Watanabe-Akaike information criteria (WAIC)

» WAIC is an alternative to DIC
» It is motivated as an approximation to leave-one-out CV

» In the end WAIC has model-fit and model-complexity
components

> Itis used the same as DIC with smaller WAIC begin
preferred

» In practice the two often give similar results, but WAIC is
arguably more theoretically justified

33/50



Watanabe-Akaike information criteria (WAIC)

> WAIC is written in terms of the posterior of the likelihood
rather than parameters

» Let m; and v; be the posterior mean and variance of
log[f(Yi[6)]

> The effective model size is py = "7, v
» The criteria is

n
WAIC = -2 Z m; + 2pw

i=1
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Cross validation

» Another very common approach is cross-validation

» This is exactly the same procedure used in classical
statistics

» This operates under the assumption that the “true” model
likely produces better out-of-sample predictions than
competing models

> Advantages: Simple, intuitive, and broadly applicable

» Disadvantages: Slow because it requires several model fits
and it is hard to say a difference is statistically significant
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K-fold Cross validation

0 Split the data into K equally-sized groups

1 Set aside group k as test set and fit the model to the
remaining K — 1 groups

2 Make predictions for the test set k based on the model fit
to the training data

3 Repea} steps 1 and 2 for k = 1, ..., K giving a predicted
value Y; for all n observations

4 Measure prediction accuracy, e.g.,

1 o -
MSE_n;(Y’_Y’)
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Variants

» Usually K is either 5 or 10

> K = nis called “leave-one-out” cross-validation, which is
great but slow

> The predicted value ¥; can be either the posterior
predictive mean or median

» Mean squared error (MSE) can be replaced with Mean
absolute deviation
1 n
MAD = — 21 Y - Vil

» Also common to compute Cor(Y;, Y;), the average
posterior variance and coverage of prediction intervals
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Measures of fit for point predictions
> Corr(Y;, V)
> Corr(Y;, Y;)?
> Bias: 37, (Y; - Y))/n
> MSE: 37 (Vi— Y;)2/n
> MAD: Y7, |Vi— Yi|/n

where Y; and Y; are the posterior predictive mean and median
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Measures of fit for binary data

~

» Classification accuracy, Y7, I(Yi — Y;)/n
» True and false positive rates comparing Y; and Y;

> Area under the receiver-operator and precision-recall
curves comparing Y; and p;

> Brier score, BS = Y"1 ,(Y; — pi)?/n

where p; is the posterior predictive probability that Y; = 1 and

A

Y; = I(p; > 0.5)
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Measures of fit for quantiles and intervals

» Coverage of 95% prediction interval, Y7, I{/; < Y; < u;}
> Interval width >, (u; — I})/n

» Interval score
Z — )+ = { = YOI < ) + (Vi — u)I(Yi > u)}

» Quantile score >°7_; p-{Yi — qi(7)}/n for check function

pr(€) = {T|e| °=0

(1—171)e] e<O0

where g;(7) is the 7 quantile of the PPD,/; = gij(«/2) and
ui = qi(1 — a/2)
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Measures of overall fit of the PPD

> The log score, -7, log(f(Y;)}/n

» Probability Integral Transform (PIT) Histogram, i.e., a
histogram of

PIT; = Fi(Y))
which should be roughly uniform

» Continuous rank probability score (CRPS)

J1EW) - 10 < ¥y

where f and F are the posterior predictive PDF and CDF
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Measures of fit

> In least squares, fit is measured using (adjusted) R?
> A Bayesian version is proposed in Gelman (2019)
> Let E(Y]|0) = () and Var(Y;|0) = 52(0)

» Then

RZ — V{,U"l (0)7 "‘7/’617(0)}
V{11(), ... n(0)} + M{05(8), ... 05(6)}

where M and V are the sample mean and variance
operators, respectively

» Mixing over 6 gives a posterior distribution of Ry
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Posterior predictive checks

» After comparing a few models, we settle on the one that
seems to fit the best

> Given this model, we then verify it is adequate

» The usual residual checks are appropriate here: qg-plots;
added variable plots; etc.

» A uniquely Bayesian diagnostic is the posterior predictive
check

» This leads to the Bayesian p-value
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Posterior predictive distributions

» Before discussing posterior predictive checks, let’s review
Bayesian prediction in general

> The plug-in approach would fix the parameters 6 at the
posterior mean 6 and then predict Ynew ~ f(y|0)

» This suppresses uncertainty in 6

» We would like to propagate this uncertainty through to the
predictions
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Posterior predictive distributions (PPD)

» We really want the PPD

» MCMC easily produces draws from this distribution

» To make S draws from the PPD, for each of the S MCMC
draws of § we draw a Ynew

» This gives draws from the PPD and clearly accounts for
uncertainty in 6.
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Posterior predictive checks

» Posterior predictive checks sample many datasets from the
PPD with the identical design (same n, same X) as the
original data set

» We then define a statistic describing the dataset, e.g.,
d(Y) =max{Yi,..., Yo}

» Denote the statistic for the original data set as dy and the
statistic from simulated data set number s as d;s

> If the model is correct, then dy should fall in the middle of
the dy, ..., ds
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Posterior predictive checks

> A measure of how extreme the observed data is relative to
this sampling distribution is the Bayesian p-value

S
1
s=1

» If pis near zero or one the model doesn't fit

» This is repeated for several d to give a comprehensive
evaluation of model fit
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