
Part 7

Model selection

ST740

North Carolina State University

1 / 50



Model selection

▶ We now have many potential models in our arsenal

▶ For a given dataset, how do determine whether a simple
model is sufficient or if we need to bring out the “big guns”?

▶ Is there a “right” model? Probably not

▶ A statistical model is a mathematical representation of
the system that includes errors and biases in the
observation process

▶ All models are simplifications of reality

▶ Why fit models at all?

▶ We want a model that is as simple as possible yet seems
to fit the data reasonably well
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Outline

Model selection
▶ Bayes factors

▶ Model averaging

▶ Selection criteria

▶ Cross validation
Model evaluation
▶ Measures of fit

▶ Posterior predictive checks
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Bayes factors (BF)

▶ In some sense BFs are the gold standard

▶ Say we are comparing two models, M1 and M2

▶ For example, Y ∼ Binomial(n, θ) and the two models are

M1 : θ = 0.5 and M2 : θ ̸= 0.5

▶ Another example, Y1,Y2, ...,Yn is a time series and

M1 : Cor(Yt+1,Yt) = 0 and M2 : Cor(Yt+1,Yt) > 0

▶ Another example,

M1 : E(Y ) = β0+β1X and M2 : E(Y ) = β0+β1X +β2X 2

4 / 50



Bayes factors (BF)

▶ This is really the same as hypothesis testing, and in fact
Bayes factors are the gold standard for hypothesis testing

▶ As before we proceed by computing the posterior
probability of the two models

▶ This require priors probabilities p(M1) and p(M2)

▶ This is not prior on a parameter, it is a prior on the model!

▶ This approach permits statements such “Given the data we
have observed, the quadratic model is 5 times more likely
than a linear model”
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Bayes factors (BF)

▶ The Bayes factor for model 2 compared to model 1 is

BF =
Posterior odds

Prior odds
=

p(M2|Y)/p(M1|Y)
p(M2)/p(M1)

=
p(Y|M2)

p(Y|M1)

▶ Rule of thumb: BF > 10 is strong evidence for M2

▶ Rule of thumb: BF > 100 is decisive evidence for M2

▶ In linear regression, BIC approximates the BF comparing a
model to the null model

6 / 50



Example

▶ Y ∼ Binomial(n, θ) with

M1 : θ = 0.5 and M2 : θ ̸= 0.5

▶ p(Y |M1) is just the binomial density with θ = 0.5

▶ M2 involves an unknown parameter θ

▶ This requires a prior, say θ ∼ Beta(a,b), and integration

p(Y |M2) =

∫
p(Y , θ)dθ =

∫
p(Y |θ)p(θ)dθ

▶ See “BF Beta-binomial” in the online derivations
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BF by Y with n = 20 and prior a = 1 and b = 1
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BF by Y with n = 20 and prior a = 0.5 and b = 0.5
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BF by Y with n = 20 and prior a = 50 and b = 50
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BF by Y with n = 20 and prior a = 50 and b = 1
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Problems with Bayes factors

▶ Often hard to compute the required integrals which is only
feasible for simple models

▶ Requires proper priors

▶ Can be very sensitive to priors (Lindley’s paradox)

▶ In most cases, I prefer computing posterior intervals from
the full model and testing by comparing these to the null
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Lindley’s paradox

▶ Lindley’s paradox is when Bayesian and frequentist
hypothesis tests give vastly different results

▶ For example, Y ∼ Normal(µ, σ2) with Ho : µ = 0 versus
Ha : µ ̸= 0

▶ The Bayesian approach requires a prior under Ha, say
µ ∼ Normal(0, τ2)

▶ Paradox: For any Y , Prob(H0|Y ) → 0 as τ → ∞

13 / 50



Lindley’s paradox

Derivation
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Computing Bayes factors using MCMC

▶ If models can be written as nested, then MCMC can be
used to approximate model probabilities

▶ For example, say

M1 : E(Y ) = β0+β1X and M2 : E(Y ) = β0+β1X +β2X 2

▶ Both model can be written as

E(Y ) = β0 + β1X + γβ2X 2

where γ ∈ {0,1} indicates the model

▶ The prior on models becomes γ ∼ Bernoulli(0.5)

▶ Then Prob(γ = 1|Y) = Prob(M2|Y) can be approximated
using MCMC
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Stochastic search variable selection (SSVS)

▶ This is the Bayesian analog of forward/backward/stepwise
variable selection

▶ We place a prior on all 2p models using p variable inclusion
indicators γj

▶ MCMC returns the approximate posterior probability of
each model

▶ With large p all models will have low probability and so this
requires long MCMC runs

▶ As with Bayesian factors, SSVS can be sensitive to priors
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Multiple testing

▶ Bayesian model selection can be extended to multiple tests

▶ Example: A study measures expression at p genetic
markers

▶ Let θj the difference in mean expression for cancer and
control subjects for marker j

▶ For j ∈ {1, ...,p} the hypotheses are

Mj1 : θj = 0 versus Mj2 : θj ̸= 0

▶ In addition to multiple testing, correlation based on the
markers’ position on the chromosome is a challenge
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Frequentist multiple testing criteria

▶ Instead of controlling error rates of individual tests, we
could consider error rates across all p tests

▶ Global Type I error is the probability of rejecting any of the
p tests given θj = 0 for all j ∈ {1, ...,p}

▶ Global Type I error can be controlled via the threshold for
the individual tests

▶ Or we would conduct one global test

M1 : θj = 0 for all j ∈ {1, ...,p}
M2 : θj ̸= 0 for at least one j ∈ {1, ...,p}

▶ A Bayesian global test computes the BF for M2 versus M1
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Frequentist multiple testing criteria

▶ In most multiple testing cases, the global null is unrealistic

▶ False discovery rate (FDR) control is more common

▶ For a given dataset and testing decision

FDP(Y) =
Number of rejections where the null is true

Number of rejections

▶ For a given testing procedure, its frequentist FDR is

FDR = E{P(Y)}

where the expectation is wrt Y

▶ The testing procedure is tuned (e.g., p-value thresholds
are set) so that FDR ≈ α
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Bayesian false discovery rate (BFDR)

▶ Let δj = 1 if the alternative Mj2 is true and δj = 0 otherwise

▶ In the Bayesian setting, δ = (δ1, ..., δp) is a random variable
and MCMC gives its joint posterior distribution

▶ We use Bayesian decision theory to summarize δ

▶ Say our decision is rj = 1 if we reject Mj1 in favor of Mj2

▶ The false discovery proportion is

FDP(r , δ) =

∑p
j=1 rj(1 − δj)∑p

j=1 rj
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Bayesian false discovery rate (BFDR

▶ To make the problem tractable, say our decision rule is

rj(t) = I(reject Mj1 in favor of Mj2 if πj > t),

where πj = Prob(δj = 1|data) = Prob(Mj2 = 1|data)

▶ Given this rule, the FDP is a function only of the threshold t

FDP(t , δ) =

∑p
j=1 rj(t)(1 − δj)∑p

j=1 rj(t)
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Bayesian false discovery rate (BFDR)

▶ From a Bayesian perspective, the random variable in
FDP(t , δ) is δ

▶ BFDR is the posterior mean FDP(t , δ)

BFDR(t) = Eδ|Y{FDP(t , δ)}

▶ Since this expectation is wrt the joint posterior of δ it
accounts for dependence between tests

▶ We can select t so that BFDR(t) ≈ α

▶ This controls posterior FDR, not frequentist FDR, although
connections can be made 1

1
Storey, 2003, The positive false discovery rate: A Bayesian interpretation and the q-value
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Model averaging

▶ Let’s go back to the linear regression example

M1 : E(Y ) = β0+β1X and M2 : E(Y ) = β0+β1X +β2X 2

▶ Say we have fit both models and found that both are about
equally likely, but that M1 is slightly preferred

▶ For prediction, Ŷ , we could simply take the prediction that
comes from fitting M1

▶ But the prediction from M2 is likely different and nearly as
accurate

▶ Also, taking the prediction from M1 suppresses our
uncertainty about the form of the model
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Model averaging

▶ Let Ŷk be the prediction from model Mk for k = 1,2

▶ The model averaged predictor is

Ŷ = wŶ1 + (1 − w)Ŷ2

▶ It can be shown that the optimal weight w is the posterior
probability of M1

▶ Madigan and Raftery2 show that BMA gives better
prediction than any individual model

▶ In regression with p predictors, there are 2p models and all
model probabilities will likely be small

2https://www.jstor.org/stable/pdf/2291017.pdf
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Information criteria
▶ Several information criteria have been proposed that do

not require fitting the model several times
▶ Many are functions of the deviance, i.e., twice the

negative log likelihood

D(Y|θ) = −2 log[f (Y|θ)]

▶ Ideally, models will have small deviance
▶ However, if a model is too complex it will have small

deviance between be unstable (over-fitting)
▶ The Akaike information criteria has a complexity penalty

AIC = D(Y|θ̂) + 2p

where θ̂ is the MLE
▶ Model with smaller AIC are preferred
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Bayesian information criteria (BIC)

▶ The Bayesian information criteria is similar

BIC = D(Y|θ̂) + log(n)p

▶ This is motivated as an approximation to the log Bayes
factor of the model compared to the null model

▶ However, this is only an asymptotic (large n) approximation

▶ With large n the prior is irrelevant, and so this is not
satisfying to a subjective Bayesian
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Deviance information criteria (DIC)

▶ DIC is a popular Bayesian analog of AIC or BIC

▶ Unlike CV, DIC requires only one model fit

▶ Unlike BF, it can be applied to complex models

▶ However, proceed with caution

▶ DIC really only applies when the posterior is approximately
normal, and will give misleading results when the posterior
far from normality, e.g., bimodal

▶ DIC is also criticized for selecting overly-complex models
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Deviance information criteria (DIC)

▶ Let D̄ = E[D(Y |θ)|Y] be the posterior mean of the deviance

▶ Denote θ̂ as the posterior mean of θ

▶ The effective number of parameters is

pD = D̄ − D(Y|θ̂)

▶ DIC can be written like AIC,

DIC = D̄ + pD = D(Y|θ̂) + 2pD

▶ Models with small D̄ fit the data well

▶ Models with small pD are simple

▶ We prefer models that are simple and fit well, so we select
the model with smallest DIC
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DIC

▶ The effective number of parameters is a useful measure of
model complexity

▶ Intuitively, if there are p parameters and we have
uninformative priors then pD ≈ p

▶ However, pD << p if there are strong priors

▶ For example, how many free degrees of freedom do we
have with θ ∼ Beta(1,1) versus θ ∼ Beta(1000,1000)?

▶ In some cases pD has a nice closed form

▶ A few examples are worked out in “DIC” on the online
derivations
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DIC

▶ As with AIC or BIC, we compute DIC for all models under
consideration and select the one with smallest DIC

▶ Rule of thumb: a difference of DIC of less than 5 is not
definitive and a difference greater than 10 is substantial

▶ As with AIC or BIC, the actual value is meaningless, only
differences are relevant

▶ DIC can only be used to compare models with the same
likelihood
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Watanabe-Akaike information criteria (WAIC)

▶ WAIC is an alternative to DIC

▶ It is motivated as an approximation to leave-one-out CV

▶ In the end WAIC has model-fit and model-complexity
components

▶ It is used the same as DIC with smaller WAIC begin
preferred

▶ In practice the two often give similar results, but WAIC is
arguably more theoretically justified
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Watanabe-Akaike information criteria (WAIC)

▶ WAIC is written in terms of the posterior of the likelihood
rather than parameters

▶ Let mi and vi be the posterior mean and variance of

log[f (Yi |θ)]

▶ The effective model size is pW =
∑n

i=1 vi

▶ The criteria is

WAIC = −2
n∑

i=1

mi + 2pW
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Cross validation

▶ Another very common approach is cross-validation

▶ This is exactly the same procedure used in classical
statistics

▶ This operates under the assumption that the “true” model
likely produces better out-of-sample predictions than
competing models

▶ Advantages: Simple, intuitive, and broadly applicable

▶ Disadvantages: Slow because it requires several model fits
and it is hard to say a difference is statistically significant
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K-fold Cross validation

0 Split the data into K equally-sized groups

1 Set aside group k as test set and fit the model to the
remaining K − 1 groups

2 Make predictions for the test set k based on the model fit
to the training data

3 Repeat steps 1 and 2 for k = 1, ...,K giving a predicted
value Ŷi for all n observations

4 Measure prediction accuracy, e.g.,

MSE =
1
n

n∑
i=1

(Yi − Ŷi)
2
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Variants

▶ Usually K is either 5 or 10

▶ K = n is called “leave-one-out” cross-validation, which is
great but slow

▶ The predicted value Ŷi can be either the posterior
predictive mean or median

▶ Mean squared error (MSE) can be replaced with Mean
absolute deviation

MAD =
1
n

n∑
i=1

|Yi − Ŷi |

▶ Also common to compute Cor(Yi ,Yi), the average
posterior variance and coverage of prediction intervals
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Measures of fit for point predictions

▶ Corr(Yi , Ŷi)

▶ Corr(Yi , Ŷi)
2

▶ Bias:
∑n

i=1(Ŷi − Yi)/n

▶ MSE:
∑n

i=1(Ŷi − Yi)
2/n

▶ MAD:
∑n

i=1 |Ỹi − Yi |/n

where Ŷi and Ỹi are the posterior predictive mean and median
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Measures of fit for binary data

▶ Classification accuracy,
∑n

i=1 I(Yi − Ŷi)/n

▶ True and false positive rates comparing Yi and Ŷi

▶ Area under the receiver-operator and precision-recall
curves comparing Yi and pi

▶ Brier score, BS =
∑n

i=1(Yi − pi)
2/n

where pi is the posterior predictive probability that Yi = 1 and
Ŷi = I(pi > 0.5)
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Measures of fit for quantiles and intervals

▶ Coverage of 95% prediction interval,
∑n

i=1 I{li < Yi < ui}

▶ Interval width
∑n

i=1(ui − li)/n

▶ Interval score

1
n

n∑
i=1

(ui − li) +
2
α
{(li − Yi)I(Yi < li) + (Yi − ui)I(Yi > ui)}

▶ Quantile score
∑n

i=1 ρτ{Yi − qi(τ)}/n for check function

ρτ (e) =

{
τ |e| e ≥ 0
(1 − τ)|e| e < 0

where qi(τ) is the τ quantile of the PPD,li = qi(α/2) and
ui = qi(1 − α/2)
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Measures of overall fit of the PPD

▶ The log score,
∑n

i=1 log(f̂i(Yi)}/n

▶ Probability Integral Transform (PIT) Histogram, i.e., a
histogram of

PITi = F̂i(Yi)

which should be roughly uniform

▶ Continuous rank probability score (CRPS)∫
{F̂ (y)− I(Yi < y)}2dy

where f̂ and F̂ are the posterior predictive PDF and CDF
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Measures of fit

▶ In least squares, fit is measured using (adjusted) R2

▶ A Bayesian version is proposed in Gelman (2019)

▶ Let E(Yi |θ) = µi(θ) and Var(Yi |θ) = σ2(θ)

▶ Then

R2 =
V{µ1(θ), ..., µn(θ)}

V{µ1(θ), ..., µn(θ)}+ M{σ2
1(θ), ..., σ

2
n(θ)}

,

where M and V are the sample mean and variance
operators, respectively

▶ Mixing over θ gives a posterior distribution of R2
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Posterior predictive checks

▶ After comparing a few models, we settle on the one that
seems to fit the best

▶ Given this model, we then verify it is adequate

▶ The usual residual checks are appropriate here: qq-plots;
added variable plots; etc.

▶ A uniquely Bayesian diagnostic is the posterior predictive
check

▶ This leads to the Bayesian p-value
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Posterior predictive distributions

▶ Before discussing posterior predictive checks, let’s review
Bayesian prediction in general

▶ The plug-in approach would fix the parameters θ at the
posterior mean θ̂ and then predict Ynew ∼ f (y |θ̂)

▶ This suppresses uncertainty in θ

▶ We would like to propagate this uncertainty through to the
predictions
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Posterior predictive distributions (PPD)

▶ We really want the PPD

f (Ynew |Y) =
∫

f (Ynew , θ|y)dθ =

∫
f (Ynew |θ)f (θ|y)dθ

▶ MCMC easily produces draws from this distribution

▶ To make S draws from the PPD, for each of the S MCMC
draws of θ we draw a Ynew

▶ This gives draws from the PPD and clearly accounts for
uncertainty in θ.
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Posterior predictive checks

▶ Posterior predictive checks sample many datasets from the
PPD with the identical design (same n, same X) as the
original data set

▶ We then define a statistic describing the dataset, e.g.,

d(Y) = max{Y1, ...,Yn}

▶ Denote the statistic for the original data set as d0 and the
statistic from simulated data set number s as ds

▶ If the model is correct, then d0 should fall in the middle of
the d1, ...,dS
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Posterior predictive checks

▶ A measure of how extreme the observed data is relative to
this sampling distribution is the Bayesian p-value

p =
1
S

S∑
s=1

I(ds > d0)

▶ If p is near zero or one the model doesn’t fit

▶ This is repeated for several d to give a comprehensive
evaluation of model fit
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