
Part 5

Handling large datasets

ST740

North Carolina State University

1 / 45



What to do for massive datsets?

▶ MCMC remains the gold standard for Bayesian computing,
but it can be slow

▶ However, many new tools have come online in the past ten
years

▶ Bayesian computing for large datasets remains an active
area of research

2 / 45



Outline

▶ MAP estimation

▶ Approximate likelihood

▶ Divide and Conquer

▶ Variational Bayes

▶ Stochastic gradient MCMC

3 / 45



MAP estimation

▶ Sometimes, especially for n >> p, quantifying parametric
uncertainty is not important

▶ A MAP estimator is sufficient for point prediction

▶ The MAP estimator is

θ̂ = arg maxθ log(f (y|θ)) + log(π(θ))

▶ Frequentists might call this a penalized likelihood where
the prior is the penalty term

▶ The MAP estimator still incorporates prior information

▶ All optimization routines (EM, SGD, MM, etc) can be
applied

4 / 45



Outline

▶ MAP estimation

▶ Approximate likelihood

▶ Divide and Conquer

▶ Variational Bayes

▶ Stochastic gradient MCMC

5 / 45



Approximate likelihood

▶ Approximations can be devised on a case-by-case basis

▶ For example, consider the geostatistical model with
observation Yi at spatial location si

▶ We might assume Y is a Gaussian process with mean
E(Yi) = µ, variance V(Yi) = σ2 and correlation
Corr(Yi ,Yj) = exp(−dij/ϕ) for distance dij = ||si − sj ||

▶ The likelihood is Y = (Y1, ...,Yn) ∼ Normal(µ, σ2Σ) for
n × n correlation matrix Σ with (i , j) element exp(−dij/ϕ)

▶ Dealing with the n × n covariance matrix is O(n3)

6 / 45



Approximate likelihood

▶ The likelihood for θ = (µ, σ, ϕ) can be written

f (y1, ..., yn|θ) =
n∏

i=1

f (yi |θ, y1, ..., yi−1)

▶ The Vecchia approximation defines a neighbor set
Ni ⊂ {1, ..., i − 1} so that

f (y1, ..., yn|θ) ≈ f̃ (y1, ..., yn|θ) =
n∏

i=1

f (yi |θ, yj for j ∈ Ni)

▶ Note f̃ is a valid PDF, and requires only O(nm2) where m is
the maximum size of Ni

7 / 45



Vecchia approximation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s[,1]

s[
,2

]

8 / 45



Outline

▶ MAP estimation

▶ Approximate likelihood

▶ Divide and Conquer

▶ Variational Bayes

▶ Stochastic gradient MCMC

9 / 45



Divide and conquer

▶ Parallel computing is one obvious solution to the massive
data problem

▶ MCMC is inherently sequential, but often some steps can
be done in parallel, e.g., onerous likelihood computations

▶ Divide and conquer methods better utilize parallel
computing

▶ The idea is to split the data intro groups, fit the model
separately by group and then combine the results

▶ This is similar to a meta analysis where studies on the
same topic are combined into a meta estimator

10 / 45



Divide and conquer

▶ Say the model is Yi |θ
indep∼ f (y |θ)

▶ We split the data into B batches, with Y(1), ...,Y(B) so that
Y = (Y(1), ...,Y(B))

▶ Each batch is analyzed separately, giving B posteriors of
the form p(θ|Yb) for b ∈ {1, ...,B}

▶ These computations can be done in parallel using MCMC
or Bayes CLT

▶ How to combine them to approximate the full posterior
p(θ|Y)?

11 / 45



Divide and conquer

▶ This is straightforward if the prior and posterior in each
batch are approximately Gaussian

▶ The posterior can be written

p(θ|Y) ∝ f (Y|θ)π(θ) =
B∏

b=1

[
f (Y(b)|θ)π(θ)1/B

]
▶ If the prior is θ ∼ Normal(µ,Σ), then the powered

Gaussian prior π(θ)1/B is θ ∼ Normal(µ,BΣ)

▶ Using this prior in each batch, denote the (maybe
approximate) posterior in batch b as

θ|Y(b) ∼ Normal(Mb,Vb)

12 / 45



Divide and conquer

▶ Combining terms gives

p(θ|Y) ∝
B∏

b=1

exp

[
−1

2
(θ − Mb)

T V−1
b (θ − Mb)

]
▶ Multiplying terms and completing the square gives

θ|Y ∼ Normal(P−1
B QB,P−1

B )

where PB =
∑B

b=1 V−1
b and QB =

∑B
b=1 V−1

b Mb

▶ There are extensions for non-Gaussian posteriors and
dependent data, but these are generally hard problems

13 / 45



Divide and conquer

▶ This method can also be applied for streaming data

▶ Say Yb is the data collected at time b

▶ At time b the posterior is

θ|Y1, ...,Yb ∼ Normal(P−1
b Qb,P−1

b )

where Pb =
∑b

t=1 V−1
t and Qb =

∑b
t=1 V−1

t Mt

▶ To update the posterior at time b + 1 you simply make the
updates Pb+1 = Pb + V−1

b+1 and Qb+1 = Qb + V−1
b+1Mb+1

▶ You do not have to store Yb+1 after these updates

14 / 45



Sequential Monte Carlo (SMC)/Particle filtering

▶ SMC is used for non-Gaussian posteriors

▶ In can be used for streaming data

▶ It can also be used for a static analysis that passes
through a large dataset sequentially

▶ SMC only touches each observation once, as opposed to
MCMC that uses the whole dataset each iteration

▶ We will present the simplest version here, there is a rich
literature on SMC1

1e.g., https://link.springer.com/book/10.1007/978-1-4757-3437-9
15 / 45



Sequential Monte Carlo (SMC)/Particle filtering

▶ As with MCMC, SMC using samples θ1, ...,θS to
approximate the posterior

▶ We call these “particles”

▶ Rather than treating the particles as exchangeable as in
MCMC, SMC gives them weights, w1, ...,wS

▶ We then approximation the posterior using weighted
means, variances, etc

E(θ|Y) ≈
∑S

s=1 wsθs∑S
s=1 ws

▶ Particles with small weight are “filtered out”

16 / 45



How many particles to we need?

▶ The effective sample size is

ESS =
(
∑S

s=1 ws)
2∑S

s=1 w2
s

▶ Best case: ws = w for all s and ESS = n

▶ Worst case: w1 = w > 0 and ws = 0 for all s > 1 and
ESS = 1

▶ You need ESS in the hundreds

17 / 45



How to generate the particles?

▶ A simple approach is prior sampling, θs
iid∼ π(θ)

▶ This will only work well when the prior resembles the
posterior

▶ Another possibility is to use MCMC from a subset of the
data, e.g., the first batch

▶ This is slower, but gives larger ESS since the particle
distribution is likely to be more similar to the posterior

18 / 45



How to weight the particles?
▶ Say θs = (θs1, ..., θsp)

iid∼ π(θ)

▶ Define the weight after batch b as the likelihood

wbs =
b∏

t=1

f (Yt |θs)

▶ The weights can be updated as the data arrive as

wb+1,s = wb,sf (Yb|θs)

▶ Only the weights and not the data need be stored

▶ Posterior summaries are fast to compute, e.g.,

Prob(θj > 0|Y1, ...,Yb) ≈
∑S

s=1 wbsI(θsj > 0)∑S
s=1 wbs

19 / 45



How to weight the particles?

▶ Say are MCMC samples from the posterior given the first
batch

θ1, ..., θS ∼ p(θ|Y1)

▶ Define the weight after batch b > 1 as the likelihood

wbs =
b∏

t=2

f (Yt |θs)

▶ The weights can be updated as the data arrive as

wb+1,s = wb,sf (Yb|θs)

20 / 45



SMC versus MCMC

> n <- 40
> Y <- 10
> a <- 1
> b <- 1
> t <- seq(0,1,length=1000)
> p <- dbeta(t,Y+a,n-Y+b)
> plot(t,p,type="l",xlab=expression(theta),
> ylab="Posterior")
>
> (Y+a)/(n+a+b) # Exact E(theta|Y)
[1] 0.2619048

21 / 45



SMC versus MCMC

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

θ

P
os

te
rio

r

22 / 45



SMC versus MCMC

> # MCMC
> set.seed(919)
> S <- 50
> theta <- rbeta(S,Y+a,n-Y+b)
> w <- rep(1,S)
>
> plot(t,p,type="l",xlab=expression(theta),
> ylab="Posterior")
> points(theta,rep(0,S))
> lines(theta,w,type="h")
> legend("topright",c("particle, theta_s",
> "weight, w_s"),
> pch=c(1,NA),lty=c(NA,1),bty="n")
>
> mean(theta) # Approximate E(theta|Y)
[1] 0.2634136

23 / 45



SMC versus MCMC

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

θ

P
os

te
rio

r

particle, theta_s
weight, w_s

24 / 45



SMC versus MCMC
> # SMC
> set.seed(919)
> S <- 50
> # Sample from prior
> theta <- rbeta(S,a,b)
> # Weight by likelihood
> w <- 40*dbinom(Y,n,theta)
>
> plot(t,p,type="l",xlab=expression(theta),
> ylab="Posterior")
> points(theta,rep(0,S))
> lines(theta,w,type="h")
> legend("topright",c("particle, theta_s",
> "weight, w_s"),
> pch=c(1,NA),lty=c(NA,1),bty="n")
> sum(w*theta)/sum(w) # Approx E(theta|Y)
[1] 0.2355692

25 / 45



SMC versus MCMC

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

θ

P
os

te
rio

r

particle, theta_s
weight, w_s

26 / 45



How to weight the particles?

▶ The particles are from the prior and weighted by the
likelihood, so the weighted particles approximate the
posterior

▶ However, the approximation is poor if ESS is small and
only a few particles have most of the weight

▶ There are methods to replace low-weight particles with
particles with more support

27 / 45



Outline

▶ MAP estimation

▶ Approximate likelihood

▶ Divide and Conquer

▶ Variational Bayes

▶ Stochastic gradient MCMC

28 / 45



Variational Bayes (VB)

▶ VB is popular in the machine learning community

▶ The main idea is the assume the posterior resides in a
simple class of distributions, and then find the best
approximation to the full posterior in this class

▶ For example, we might assume that

p(θ|Y) ≈
p∏

j=1

q(θj |vj)

where q is the normal PDF with parameters vj = (µj , σ
2
j )

▶ All that is left is to solve for the vj

▶ This is reminiscent of the Bayesian CLT

29 / 45



Variational Bayes

▶ Let q(θ|v) be the approximate posterior

▶ The variational parameters are v

▶ The most common assumption is the mean-field posterior

q(θ|v) =
p∏

j=1

qj(θj |vj)

that assumes posterior independence between the
parameters

▶ Other approximations are possible, e.g., q could be
multivariate normal with v = {µ,Σ}

30 / 45



Variational Bayes

▶ The variational parameters are selected to minimize the KL
divergence between p and q

KL(q||p) =
∫

log

[
q(θ|v)
p(θ|Y)

]
q(θ|v)dθ

▶ Writing p(θ|Y) = f (Y|θ)π(θ)/m(y), KL(q||p) is∫
log

[
q(θ|v)

f (Y|θ)π(θ))

]
q(θ|v)dθ + log(m(Y))

▶ The integral term is the evidence lower bound (ELBO)

▶ It can be shown that ELBO ≤ log(m(Y))

▶ The term log(m(Y)) can be ignored for estimating v and we
minimize the ELBO

31 / 45



Variational Bayes

▶ The goal is to find the values of v to minimize

ELBO(v,Y) =
∫

log

[
q(θ|v)

f (Y|θ)π(θ))

]
q(θ|v)dθ

▶ Sometimes the solution for v has a closed form

▶ More often you use coordinate descent, where you
optimize the elements of v one at a time with the others
held fixed at their current value

▶ This is similar to MCMC, except each iteration is an
optimization rather than a sample

▶ Sometimes these univariate updates have a closed-form,
sometimes they require numerical optimization

32 / 45



Variational Bayes

▶ VB is generally orders of magnitude faster than MCMC

▶ Unlike MAP estimation, VB gives a posterior variance

▶ However, it often underestimates the variance because of
simplifying assuming such as normality and independence

▶ This may not be a concern for massive datasets

▶ Often this can be resolved by finding a reparameterization
of the parameters so that the simplifying assumptions hold

33 / 45



Stochastic gradient descent (SGD)

▶ MAP and VB estimation often use SGD for large datasets

▶ The MAP estimator for independent data has the form

θ̂MAP = argmin
θ

n∑
i=1

− [log{f (Yi |θ) + log{π(θ)}/n]

= argmin
θ

n∑
i=1

l(θ|Yi)

▶ Similarly, the EB estimator can be written

v̂ = argmin
v

n∑
i=1

Q(v|Yi)

▶ For large n, computing this sum is slow and SGD is faster

34 / 45



Gradient descent (GD)

▶ GD is a classic optimization method

▶ Let ∇i(θ) be the gradient vector of l(θ|Yi) with j th element

∂

∂θj
l(θ|Yi)

▶ The full gradient is ∇(θ) =
∑n

i=1 ∇i(θt)

▶ GD begins with initial value θ0 and updates θ as

θt+1 = θt + η∇(θt)

▶ The step-size/learning rate η is a tuning parameter

35 / 45



Stochastic gradient descent (SGD)

▶ SGD uses random subset of observations to approximate
the gradient

▶ Let A ⊂ {1, ...,n} be a random subset of indices with m
elements

▶ An unbiased estimator of the gradient is

n
m

n∑
i∈A

∇i(θt) =
n∑

i=1

∇i(θt)

▶ SGD averages over minibatches of data

{Yi ; i ∈ A}

36 / 45



Stochastic gradient descent (SGD)

SGD begins with initial value θ0 and executes E
epochs/iterations with the following steps for epoch t

0 Randomly partition {1, ...,n} to minibatches A1,...,AB

1 Set θt = θt−1 + ηt
n

|A1|
∑

i∈A1
∇i(θt−1)

2 Set θt = θt + ηt
n

|A2|
∑

i∈A2
∇i(θt)

3 ...

B Set θt = θt + ηt
n

|AB |
∑

i∈AB
∇i(θt)

37 / 45



Stochastic gradient descent (SGD)

▶ The main tuning parameters are the minibatch size and the
learning rate, ηt

▶ A common minibatch size is often 32 (so B ≈ n/32)

▶ Usually ηt decreases with t to balance exploration and
refinement

▶ It must2 satisfy
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η
2
t < ∞

▶ A common learning rate schedule is ηt = c/(1 + t) for
tuning parameter c

2Robbins-Monro
38 / 45



SGD extensions

▶ Line search sets

ηt = arg min
η

∑
i∈Ab

l{θt + η∇(θt)|Yi}

▶ AdaGrad adapts the learning rate for individual parameters

θt = θt−1 + ηtDiag
[
Diag

{
H̃(θ)

}]−1/2
∇(θ)

where H̃(θ) = ∇(θ)T∇(θ) approximates the Hessian

39 / 45



SGD extensions

▶ Momentum sets

θt+1 = θt + ηt∇(θt) + αt(θt − θt−1)

where tuning parameter αt controls momentum

▶ Dropout randomly sets some elements of θt to zero at
each step

▶ Adaptive Moment Estimation (Adam) combines many of
these ideas and is the most common approach

40 / 45



Outline

▶ MAP estimation

▶ Approximate likelihood

▶ Divide and Conquer

▶ Variational Bayes

▶ Stochastic gradient MCMC

41 / 45



Stochastic gradient MCMC (SGMCMC)

▶ MALA and HMC use the posterior’s gradient to generate
high-quality candidates for MH sampling

▶ Computing the gradients is slow when n is large

▶ SGMCMC approximates the gradient with random
subsamples of the data

▶ Rather than use the full dataset for the acceptance
probability in an MH step, SGMCMC uses a small step size
and accepts all steps

▶ You can also use SGMCMC to generate candidates and
the full data for the MH step

42 / 45



Stochastic gradient MCMC

▶ We will discuss Langevin dynamics, but the ideas apply to
HMC as well

▶ The posterior is p(θ|Y) ∝
[∏n

i=1 f (Yi |θ)
]
π(θ)

▶ Write this as

p(θ|Y) ∝ exp[−U(θ)] = exp

[
n∑

i=1

Ui(θ)

]

where Ui(θ) = log[f (Yi |θ)]− log[π(θ)]/n

▶ U(θ) is called the potential function

43 / 45



Stochastic gradient MCMC

▶ Langevin diffusion satisfies the SDE

dθ(t) = −1
2
∇U[θ(t)] + dB(t)

where B(t) is Brownian motion

▶ For initial value θ(0), step size h and Z (t) ∼ Normal(0, Ip)

θ(t + h) = θ(t)− h
2
∇U[θ(t)] +

√
hZ (t)

gives samples with stationary distribution ≈ p(θ|Y)

44 / 45



Stochastic gradient MCMC
▶ The gradient term is

∇U[θ(t)] =
n∑

i=1

∇Ui [θ(t)]

▶ SGMCMC uses a random subset of observations to
approximate the gradient

▶ Say N (t) ⊂ {1, ...,n} with m labels selected at random
without replacement for each t

▶ The gradient term is approximated as

∇U[θ(t)] ≈ n
m

∑
i∈N (t)

∇Ui [θ(t)]

▶ Samples approximately follow p(θ|Y) for small h3

3https://arxiv.org/abs/1907.06986
45 / 45


