Part 5

Handling large datasets

ST740

North Carolina State University

What to do for massive datsets?

- MCMC remains the gold standard for Bayesian computing, but it can be slow
- However, many new tools have come online in the past ten years
- Bayesian computing for large datasets remains an active area of research

Outline

- MAP estimation
- Approximate likelihood
- Divide and Conquer
- Variational Bayes
- Stochastic gradient MCMC

MAP estimation

- Sometimes, especially for $n \gg p$, quantifying parametric uncertainty is not important
- A MAP estimator is sufficient for point prediction
- The MAP estimator is

$$
\hat{\boldsymbol{\theta}}=\arg \max _{\boldsymbol{\theta}} \log (f(\mathbf{y} \mid \boldsymbol{\theta}))+\log (\pi(\boldsymbol{\theta}))
$$

- Frequentists might call this a penalized likelihood where the prior is the penalty term
- The MAP estimator still incorporates prior information
- All optimization routines (EM, SGD, MM, etc) can be applied

Outline

- MAP estimation
- Approximate likelihood
- Divide and Conquer
- Variational Bayes
- Stochastic gradient MCMC

Approximate likelihood

- Approximations can be devised on a case-by-case basis
- For example, consider the geostatistical model with observation Y_{i} at spatial location s_{i}
- We might assume Y is a Gaussian process with mean $\mathrm{E}\left(Y_{i}\right)=\mu$, variance $\mathrm{V}\left(Y_{i}\right)=\sigma^{2}$ and correlation $\operatorname{Corr}\left(Y_{i}, Y_{j}\right)=\exp \left(-d_{i j} / \phi\right)$ for distance $d_{i j}=\left\|s_{i}-s_{j}\right\|$
- The likelihood is $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{Normal}\left(\mu, \sigma^{2} \Sigma\right)$ for $n \times n$ correlation matrix Σ with (i, j) element $\exp \left(-d_{i j} / \phi\right)$
- Dealing with the $n \times n$ covariance matrix is $O\left(n^{3}\right)$

Approximate likelihood

- The likelihood for $\boldsymbol{\theta}=(\mu, \sigma, \phi)$ can be written

$$
f\left(y_{1}, \ldots, y_{n} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \boldsymbol{\theta}, y_{1}, \ldots, y_{i-1}\right)
$$

- The Vecchia approximation defines a neighbor set $\mathcal{N}_{i} \subset\{1, \ldots, i-1\}$ so that

$$
f\left(y_{1}, \ldots, y_{n} \mid \boldsymbol{\theta}\right) \approx \tilde{f}\left(y_{1}, \ldots, y_{n} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \boldsymbol{\theta}, y_{j} \text { for } j \in \mathcal{N}_{i}\right)
$$

- Note \tilde{f} is a valid PDF, and requires only $O\left(n m^{2}\right)$ where m is the maximum size of \mathcal{N}_{i}

Vecchia approximation

Outline

- MAP estimation
- Approximate likelihood
- Divide and Conquer
- Variational Bayes
- Stochastic gradient MCMC

Divide and conquer

- Parallel computing is one obvious solution to the massive data problem
- MCMC is inherently sequential, but often some steps can be done in parallel, e.g., onerous likelihood computations
- Divide and conquer methods better utilize parallel computing
- The idea is to split the data intro groups, fit the model separately by group and then combine the results
- This is similar to a meta analysis where studies on the same topic are combined into a meta estimator

Divide and conquer

- Say the model is $Y_{i} \mid \boldsymbol{\theta} \stackrel{\text { indep }}{\sim} f(y \mid \theta)$
- We split the data into B batches, with $\mathbf{Y}_{(1)}, \ldots, \mathbf{Y}_{(B)}$ so that $\mathbf{Y}=\left(\mathbf{Y}_{(1)}, \ldots, \mathbf{Y}_{(B)}\right)$
- Each batch is analyzed separately, giving B posteriors of the form $p\left(\boldsymbol{\theta} \mid \mathbf{Y}_{b}\right)$ for $b \in\{1, \ldots, B\}$
- These computations can be done in parallel using MCMC or Bayes CLT
- How to combine them to approximate the full posterior $p(\boldsymbol{\theta} \mid \mathbf{Y})$?

Divide and conquer

- This is straightforward if the prior and posterior in each batch are approximately Gaussian
- The posterior can be written

$$
p(\boldsymbol{\theta} \mid \mathbf{Y}) \propto f(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})=\prod_{b=1}^{B}\left[f\left(Y_{(b)} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})^{1 / B}\right]
$$

- If the prior is $\boldsymbol{\theta} \sim \operatorname{Normal}(\mu, \Sigma)$, then the powered Gaussian prior $\pi(\theta)^{1 / B}$ is $\theta \sim \operatorname{Normal}(\mu, B \Sigma)$
- Using this prior in each batch, denote the (maybe approximate) posterior in batch b as

$$
\boldsymbol{\theta} \mid \mathbf{Y}_{(b)} \sim \operatorname{Normal}\left(M_{b}, V_{b}\right)
$$

Divide and conquer

- Combining terms gives

$$
p(\boldsymbol{\theta} \mid \mathbf{Y}) \propto \prod_{b=1}^{B} \exp \left[-\frac{1}{2}\left(\boldsymbol{\theta}-M_{b}\right)^{T} V_{b}^{-1}\left(\boldsymbol{\theta}-M_{b}\right)\right]
$$

- Multiplying terms and completing the square gives

$$
\theta \mid \mathbf{Y} \sim \operatorname{Normal}\left(P_{B}^{-1} Q_{B}, P_{B}^{-1}\right)
$$

where $P_{B}=\sum_{b=1}^{B} V_{b}^{-1}$ and $Q_{B}=\sum_{b=1}^{B} V_{b}^{-1} M_{b}$

- There are extensions for non-Gaussian posteriors and dependent data, but these are generally hard problems

Divide and conquer

- This method can also be applied for streaming data
- Say Y_{b} is the data collected at time b
- At time b the posterior is

$$
\theta \mid \mathbf{Y}_{1}, \ldots, \mathbf{Y}_{b} \sim \operatorname{Normal}\left(P_{b}^{-1} Q_{b}, P_{b}^{-1}\right)
$$

where $P_{b}=\sum_{t=1}^{b} V_{t}^{-1}$ and $Q_{b}=\sum_{t=1}^{b} V_{t}^{-1} M_{t}$

- To update the posterior at time $b+1$ you simply make the updates $P_{b+1}=P_{b}+V_{b+1}^{-1}$ and $Q_{b+1}=Q_{b}+V_{b+1}^{-1} M_{b+1}$
- You do not have to store Y_{b+1} after these updates

Sequential Monte Carlo (SMC)/Particle filtering

- SMC is used for non-Gaussian posteriors
- In can be used for streaming data
- It can also be used for a static analysis that passes through a large dataset sequentially
- SMC only touches each observation once, as opposed to MCMC that uses the whole dataset each iteration
- We will present the simplest version here, there is a rich literature on SMC ${ }^{1}$

[^0]
Sequential Monte Carlo (SMC)/Particle filtering

- As with MCMC, SMC using samples $\theta_{1}, \ldots, \theta_{S}$ to approximate the posterior
- We call these "particles"
- Rather than treating the particles as exchangeable as in MCMC, SMC gives them weights, w_{1}, \ldots, w_{S}
- We then approximation the posterior using weighted means, variances, etc

$$
\mathrm{E}(\boldsymbol{\theta} \mid \mathbf{Y}) \approx \frac{\sum_{s=1}^{S} w_{s} \boldsymbol{\theta}_{s}}{\sum_{s=1}^{S} w_{s}}
$$

- Particles with small weight are "filtered out"

How many particles to we need?

- The effective sample size is

$$
E S S=\frac{\left(\sum_{s=1}^{S} w_{s}\right)^{2}}{\sum_{s=1}^{S} w_{S}^{2}}
$$

- Best case: $w_{s}=w$ for all s and $E S S=n$
- Worst case: $w_{1}=w>0$ and $w_{s}=0$ for all $s>1$ and $E S S=1$
- You need ESS in the hundreds

How to generate the particles?

- A simple approach is prior sampling, $\theta_{s} \stackrel{\text { iid }}{\sim} \pi(\boldsymbol{\theta})$
- This will only work well when the prior resembles the posterior
- Another possibility is to use MCMC from a subset of the data, e.g., the first batch
- This is slower, but gives larger ESS since the particle distribution is likely to be more similar to the posterior

How to weight the particles?

- Say $\theta_{s}=\left(\theta_{s 1}, \ldots, \theta_{s p}\right) \stackrel{i i d}{\sim} \pi(\boldsymbol{\theta})$
- Define the weight after batch b as the likelihood

$$
w_{b s}=\prod_{t=1}^{b} f\left(\mathbf{Y}_{t} \mid \boldsymbol{\theta}_{s}\right)
$$

- The weights can be updated as the data arrive as

$$
w_{b+1, s}=w_{b, s} f\left(\mathbf{Y}_{b} \mid \boldsymbol{\theta}_{s}\right)
$$

- Only the weights and not the data need be stored
- Posterior summaries are fast to compute, e.g.,

$$
\operatorname{Prob}\left(\theta_{j}>0 \mid \mathbf{Y}_{1}, \ldots, \mathbf{Y}_{b}\right) \approx \frac{\sum_{s=1}^{S} w_{b s} I\left(\theta_{s j}>0\right)}{\sum_{s=1}^{S} w_{b s}}
$$

How to weight the particles?

- Say are MCMC samples from the posterior given the first batch

$$
\theta_{1}, \ldots, \theta_{S} \sim p\left(\boldsymbol{\theta} \mid \mathbf{Y}_{1}\right)
$$

- Define the weight after batch $b>1$ as the likelihood

$$
w_{b s}=\prod_{t=2}^{b} f\left(\mathbf{Y}_{t} \mid \boldsymbol{\theta}_{s}\right)
$$

- The weights can be updated as the data arrive as

$$
w_{b+1, s}=w_{b, s} f\left(\mathbf{Y}_{b} \mid \boldsymbol{\theta}_{s}\right)
$$

SMC versus MCMC

```
> n <- 40
> Y <- 10
>a<-1
> b <- 1
> t <- seq(0,1,length=1000)
> p <- dbeta(t,Y+a,n-Y+b)
> plot(t,p,type="l",xlab=expression(theta),
> ylab="Posterior")
>
> (Y+a)/(n+a+b) # Exact E(theta|Y)
[1] 0.2619048
```


SMC versus MCMC

SMC versus MCMC

$>$ \# MCMC
$>$ set. seed (919)
$>S \quad<-50$
$>$ theta $<-$ rbeta $(S, Y+a, n-Y+b)$
$>\mathrm{w} \quad<-\operatorname{rep}(1, S)$
$>$
> plot(t,p,type="l", xlab=expression(theta),
$>\quad$ ylab="Posterior")
$>$ points (theta, rep $(0, S)$)
> lines (theta,w,type="h")
> legend("topright", c("particle, theta_s",
> "weight, w_s"),
$>\quad \operatorname{pch}=c(1, N A), \operatorname{lty}=c(N A, 1), b t y=" n ")$
$>$
> mean(theta) \# Approximate E(thetalY)
[1] 0.2634136

SMC versus MCMC

SMC versus MCMC

$>$ \# SMC
$>$ set. seed (919)
$>S \quad<-50$
> \# Sample from prior
$>$ theta <- rbeta(S, a,b)
> \# Weight by likelihood
$>\mathrm{w}<-40 * \operatorname{dbinom}(\mathrm{Y}, \mathrm{n}$, theta)
$>$
> plot(t,p,type="l",xlab=expression(theta),
> ylab="Posterior")
$>$ points (theta, rep $(0, S)$)
> lines (theta,w,type="h")
> legend("topright", c("particle, theta_s",
> "weight, w_s"),
$>\quad \mathrm{pch}=\mathrm{c}(1, N A), \operatorname{lty}=c(N A, 1), b t y=" \mathrm{n} ")$
$>\operatorname{sum}(w * t h e t a) / s u m(w) ~ \# ~ A p p r o x ~ E(t h e t a \mid Y) ~$
[1] 0.2355692

SMC versus MCMC

How to weight the particles?

- The particles are from the prior and weighted by the likelihood, so the weighted particles approximate the posterior
- However, the approximation is poor if ESS is small and only a few particles have most of the weight
- There are methods to replace low-weight particles with particles with more support

Outline

- MAP estimation
- Approximate likelihood
- Divide and Conquer
- Variational Bayes
- Stochastic gradient MCMC

Variational Bayes (VB)

- VB is popular in the machine learning community
- The main idea is the assume the posterior resides in a simple class of distributions, and then find the best approximation to the full posterior in this class
- For example, we might assume that

$$
p(\boldsymbol{\theta} \mid \mathbf{Y}) \approx \prod_{j=1}^{p} q\left(\theta_{j} \mid \mathbf{v}_{j}\right)
$$

where q is the normal PDF with parameters $\mathbf{v}_{j}=\left(\mu_{j}, \sigma_{j}^{2}\right)$

- All that is left is to solve for the \mathbf{v}_{j}
- This is reminiscent of the Bayesian CLT

Variational Bayes

- Let $q(\theta \mid \mathbf{v})$ be the approximate posterior
- The variational parameters are \mathbf{v}
- The most common assumption is the mean-field posterior

$$
q(\boldsymbol{\theta} \mid \mathbf{v})=\prod_{j=1}^{p} q_{j}\left(\theta_{j} \mid \mathbf{v}_{j}\right)
$$

that assumes posterior independence between the parameters

- Other approximations are possible, e.g., q could be multivariate normal with $\mathbf{v}=\{\mu, \Sigma\}$

Variational Bayes

- The variational parameters are selected to minimize the KL divergence between p and q

$$
K L(q \| p)=\int \log \left[\frac{q(\boldsymbol{\theta} \mid \mathbf{v})}{p(\boldsymbol{\theta} \mid \mathbf{Y})}\right] q(\boldsymbol{\theta} \mid \mathbf{v}) d \boldsymbol{\theta}
$$

- Writing $p(\boldsymbol{\theta} \mid \mathbf{Y})=f(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) / m(\mathbf{y}), K L(q \| p)$ is

$$
\int \log \left[\frac{q(\boldsymbol{\theta} \mid \mathbf{V})}{f(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}))}\right] q(\boldsymbol{\theta} \mid \mathbf{v}) d \boldsymbol{\theta}+\log (m(\mathbf{Y}))
$$

- The integral term is the evidence lower bound (ELBO)
- It can be shown that ELBO $\leq \log (m(\mathbf{Y}))$
- The term $\log (m(\mathbf{Y}))$ can be ignored for estimating \mathbf{v} and we minimize the ELBO

Variational Bayes

- The goal is to find the values of \mathbf{v} to minimize

$$
E L B O(\mathbf{v}, \mathbf{Y})=\int \log \left[\frac{q(\boldsymbol{\theta} \mid \mathbf{v})}{f(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}))}\right] q(\boldsymbol{\theta} \mid \mathbf{v}) d \boldsymbol{\theta}
$$

- Sometimes the solution for \mathbf{v} has a closed form
- More often you use coordinate descent, where you optimize the elements of \mathbf{v} one at a time with the others held fixed at their current value
- This is similar to MCMC, except each iteration is an optimization rather than a sample
- Sometimes these univariate updates have a closed-form, sometimes they require numerical optimization

Variational Bayes

- VB is generally orders of magnitude faster than MCMC
- Unlike MAP estimation, VB gives a posterior variance
- However, it often underestimates the variance because of simplifying assuming such as normality and independence
- This may not be a concern for massive datasets
- Often this can be resolved by finding a reparameterization of the parameters so that the simplifying assumptions hold

Stochastic gradient descent (SGD)

- MAP and VB estimation often use SGD for large datasets
- The MAP estimator for independent data has the form

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{M A P} & =\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n}-\left[\log \left\{f\left(Y_{i} \mid \boldsymbol{\theta}\right)+\log \{\pi(\boldsymbol{\theta})\} / n\right]\right. \\
& =\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} I\left(\boldsymbol{\theta} \mid Y_{i}\right)
\end{aligned}
$$

- Similarly, the EB estimator can be written

$$
\hat{\mathbf{v}}=\underset{\mathbf{v}}{\operatorname{argmin}} \sum_{i=1}^{n} Q\left(\mathbf{v} \mid Y_{i}\right)
$$

- For large n, computing this sum is slow and SGD is faster

Gradient descent (GD)

- GD is a classic optimization method
- Let $\nabla_{i}(\boldsymbol{\theta})$ be the gradient vector of $I\left(\theta \mid Y_{i}\right)$ with $j^{\text {th }}$ element

$$
\frac{\partial}{\partial \theta_{j}} I\left(\boldsymbol{\theta} \mid Y_{i}\right)
$$

- The full gradient is $\nabla(\boldsymbol{\theta})=\sum_{i=1}^{n} \nabla_{i}\left(\boldsymbol{\theta}_{t}\right)$
- GD begins with initial value θ_{0} and updates θ as

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\eta \nabla\left(\boldsymbol{\theta}_{t}\right)
$$

- The step-size/learning rate η is a tuning parameter

Stochastic gradient descent (SGD)

- SGD uses random subset of observations to approximate the gradient
- Let $\mathcal{A} \subset\{1, \ldots, n\}$ be a random subset of indices with m elements
- An unbiased estimator of the gradient is

$$
\frac{n}{m} \sum_{i \in \mathcal{A}}^{n} \nabla_{i}\left(\boldsymbol{\theta}_{t}\right)=\sum_{i=1}^{n} \nabla_{i}\left(\boldsymbol{\theta}_{t}\right)
$$

- SGD averages over minibatches of data

$$
\left\{Y_{i} ; i \in \mathcal{A}\right\}
$$

Stochastic gradient descent (SGD)

SGD begins with initial value θ_{0} and executes E epochs/iterations with the following steps for epoch t

0 Randomly partition $\{1, \ldots, n\}$ to minibatches $\mathcal{A}_{1}, \ldots, \mathcal{A}_{B}$
1 Set $\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}+\eta_{t} \frac{n}{\left|\mathcal{A}_{1}\right|} \sum_{i \in \mathcal{A}_{1}} \nabla_{i}\left(\boldsymbol{\theta}_{t-1}\right)$
$2 \operatorname{Set} \boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t}+\eta_{t} \frac{n}{\left|\mathcal{A}_{2}\right|} \sum_{i \in \mathcal{A}_{2}} \nabla_{i}\left(\boldsymbol{\theta}_{t}\right)$

3 ...
$B \operatorname{Set} \boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t}+\eta_{t} \frac{n}{\left|\mathcal{A}_{B}\right|} \sum_{i \in \mathcal{A}_{B}} \nabla_{i}\left(\boldsymbol{\theta}_{t}\right)$

Stochastic gradient descent (SGD)

- The main tuning parameters are the minibatch size and the learning rate, η_{t}
- A common minibatch size is often 32 (so $B \approx n / 32$)
- Usually η_{t} decreases with t to balance exploration and refinement
- It must ${ }^{2}$ satisfy $\sum_{t=1}^{\infty} \eta_{t}=\infty$ and $\sum_{t=1}^{\infty} \eta_{t}^{2}<\infty$
- A common learning rate schedule is $\eta_{t}=c /(1+t)$ for tuning parameter c

[^1]
SGD extensions

- Line search sets

$$
\eta_{t}=\underset{\eta}{\arg \min } \sum_{i \in \mathcal{A}_{b}} I\left\{\boldsymbol{\theta}_{t}+\eta \nabla\left(\boldsymbol{\theta}_{t}\right) \mid Y_{i}\right\}
$$

- AdaGrad adapts the learning rate for individual parameters

$$
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}+\eta_{t} \operatorname{Diag}[\operatorname{Diag}\{\tilde{H}(\boldsymbol{\theta})\}]^{-1 / 2} \nabla(\theta)
$$

where $\tilde{H}(\boldsymbol{\theta})=\nabla(\theta)^{T} \nabla(\theta)$ approximates the Hessian

SGD extensions

- Momentum sets

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\eta_{t} \nabla\left(\theta_{t}\right)+\alpha_{t}\left(\boldsymbol{\theta}_{t}-\boldsymbol{\theta}_{t-1}\right)
$$

where tuning parameter α_{t} controls momentum

- Dropout randomly sets some elements of $\boldsymbol{\theta}_{t}$ to zero at each step
- Adaptive Moment Estimation (Adam) combines many of these ideas and is the most common approach

Outline

- MAP estimation
- Approximate likelihood
- Divide and Conquer
- Variational Bayes
- Stochastic gradient MCMC

Stochastic gradient MCMC (SGMCMC)

- MALA and HMC use the posterior's gradient to generate high-quality candidates for MH sampling
- Computing the gradients is slow when n is large
- SGMCMC approximates the gradient with random subsamples of the data
- Rather than use the full dataset for the acceptance probability in an MH step, SGMCMC uses a small step size and accepts all steps
- You can also use SGMCMC to generate candidates and the full data for the MH step

Stochastic gradient MCMC

- We will discuss Langevin dynamics, but the ideas apply to HMC as well
- The posterior is $p(\boldsymbol{\theta} \mid \mathbf{Y}) \propto\left[\prod_{i=1}^{n} f\left(Y_{i} \mid \boldsymbol{\theta}\right)\right] \pi(\boldsymbol{\theta})$
- Write this as

$$
p(\boldsymbol{\theta} \mid \mathbf{Y}) \propto \exp [-U(\boldsymbol{\theta})]=\exp \left[\sum_{i=1}^{n} U_{i}(\boldsymbol{\theta})\right]
$$

where $U_{i}(\boldsymbol{\theta})=\log \left[f\left(Y_{i} \mid \boldsymbol{\theta}\right)\right]-\log [\pi(\boldsymbol{\theta})] / n$

- $U(\theta)$ is called the potential function

Stochastic gradient MCMC

- Langevin diffusion satisfies the SDE

$$
d \boldsymbol{\theta}(t)=-\frac{1}{2} \nabla U[\boldsymbol{\theta}(t)]+d B(t)
$$

where $B(t)$ is Brownian motion

- For initial value $\boldsymbol{\theta}(0)$, step size h and $Z(t) \sim \operatorname{Normal}\left(\mathbf{O}, \mathbf{I}_{p}\right)$

$$
\boldsymbol{\theta}(t+h)=\boldsymbol{\theta}(t)-\frac{h}{2} \nabla U[\theta(t)]+\sqrt{h} Z(t)
$$

gives samples with stationary distribution $\approx p(\boldsymbol{\theta} \mid \mathbf{Y})$

Stochastic gradient MCMC

- The gradient term is

$$
\nabla U[\theta(t)]=\sum_{i=1}^{n} \nabla U_{i}[\theta(t)]
$$

- SGMCMC uses a random subset of observations to approximate the gradient
- Say $\mathcal{N}(t) \subset\{1, \ldots, n\}$ with m labels selected at random without replacement for each t
- The gradient term is approximated as

$$
\nabla U[\theta(t)] \approx \frac{n}{m} \sum_{i \in \mathcal{N}(t)} \nabla U_{i}[\theta(t)]
$$

- Samples approximately follow $p(\boldsymbol{\theta} \mid \mathbf{Y})$ for small h^{3}

[^0]: ${ }^{1}$ e.g., https://link.springer.com/book/10.1007/978-1-4757-3437-9

[^1]: ${ }^{2}$ Robbins-Monro

