Part 5

Handling large datasets

ST740

North Carolina State University

1/45

What to do for massive datsets?

» MCMC remains the gold standard for Bayesian computing,
but it can be slow

» However, many new tools have come online in the past ten
years

» Bayesian computing for large datasets remains an active
area of research

2/45

Outline

» MAP estimation

» Approximate likelihood

» Divide and Conquer

> Variational Bayes

» Stochastic gradient MCMC

3/45

MAP estimation

» Sometimes, especially for n >> p, quantifying parametric
uncertainty is not important

> A MAP estimator is sufficient for point prediction

» The MAP estimator is

A

0 = arg maxg log(f(y|0)) + log(7(8))

» Frequentists might call this a penalized likelihood where
the prior is the penalty term

» The MAP estimator still incorporates prior information

> All optimization routines (EM, SGD, MM, etc) can be
applied

4/45

Outline

» MAP estimation

» Approximate likelihood

» Divide and Conquer

> Variational Bayes

» Stochastic gradient MCMC

5/45

Approximate likelihood

» Approximations can be devised on a case-by-case basis

» For example, consider the geostatistical model with
observation Y; at spatial location s;

» We might assume Y is a Gaussian process with mean
E(Y;) = u, variance V(Y;) = 2 and correlation
Corr(Y;, Y;) = exp(—dj/¢) for distance dj = ||s; — sj|

» The likelihood is Y = (Y3, ..., Y5) ~ Normal(u, 02X) for
n x n correlation matrix X with (/,) element exp(—dj/¢)

» Dealing with the n x n covariance matrix is O(n®)

6/45

Approximate likelihood

» The likelihood for @ = (u, o, ¢) can be written
n
f(y1, ., ynl0) = T F¥il0, y1. s Yic1)
i=1
» The Vecchia approximation defines a neighbor set
N;c{1,..,i—1} so that
. n
f(y'la a}’nle) ~ f(y17 aYn|9) = H f(yI’07yj for j € M)
i=1

> Note f is a valid PDF, and requires only O(nm?) where m is
the maximum size of \;

7/45

Vecchia approximation

s[.2]

1.0

0.8

0.6

0.4

0.2

0.0

oo o
°© 0680 % oo 0o ° ° ®, g 00 ©
o o 00,0 © o
o o o % oé; ° 5° 80%% *® o
@ o @%d® ©80%0 4 °© o g ©
oo K %0 o 0,%0 o A 0o °
o o
R o (8 8 8§ 2 009 0° %
o @ o)
° °y o & o
o o o © o o ®ow ©
o ©° ° 09 © °o O&GJO &
oo 8 @ °° o o ©
o © oo 0,00 o ® o
00 ¢ o o o 9% 3 o
o 8 0° 0o
6 © 2@ %0‘8 o o 0@ °s o ®
@00 g B © o % & o
o 90 00 000 0,0 0O
og® © o
& 2 ° @, E?)(g‘)) o
° o 00 oo °
o o o 8 ° [shge} 800 0% o
° o 8o
° ® © 2, & o % ®
0.0 o L] 20 OO ° °
0 o o Yy o° 00
@® %8 ® 5° Ooe %%0 o
o o B 5 oo
o o & o o &L w
80,802 @ % & ©° o o
o080 o 00 ° @
%) oo © o o 0 ®©
® [}
co ©° % @& o o B, 08
T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0
s[,1]

8/45

Outline

» MAP estimation

» Approximate likelihood

» Divide and Conquer

> Variational Bayes

» Stochastic gradient MCMC

9/45

Divide and conquer

» Parallel computing is one obvious solution to the massive
data problem

» MCMC is inherently sequential, but often some steps can
be done in parallel, e.g., onerous likelihood computations

» Divide and conquer methods better utilize parallel
computing

> The idea is to split the data intro groups, fit the model
separately by group and then combine the results

» This is similar to a meta analysis where studies on the
same topic are combined into a meta estimator

10/45

Divide and conquer

> Say the model is Yi|0 "Z” f(y|0)

> We split the data into B batches, with Y4, ..., Y(g) so that
Y=(Yq), - Ys)

» Each batch is analyzed separately, giving B posteriors of
the form p(0|Yy) for b € {1, ..., B}

» These computations can be done in parallel using MCMC
or Bayes CLT

» How to combine them to approximate the full posterior
p(6]Y)?

11/45

Divide and conquer

» This is straightforward if the prior and posterior in each
batch are approximately Gaussian

» The posterior can be written

[0y

p(OY) o f(Y|0)m(6) = || [f(yb)‘g 9)1/8
b1

» If the prior is 8 ~ Normal(y, X), then the powered
Gaussian prior 7(8)"/8 is & ~ Normal(u, BX)

» Using this prior in each batch, denote the (maybe
approximate) posterior in batch b as

9|Y(b) ~ NormaI(Mb, Vb)

12/45

Divide and conquer

» Combining terms gives
5 1
p(ON) o T[exp |~ 5(6 — M)V, (6 - M)
b=1

» Multiplying terms and completing the square gives
0|Y ~ Normal(P5'Qg, P5")

where Ps =8, V; " and Qg = X5V, 'Mp

» There are extensions for non-Gaussian posteriors and
dependent data, but these are generally hard problems

13/45

Divide and conquer

» This method can also be applied for streaming data
» Say Y, is the data collected at time b

> At time b the posterior is

0|Yq,....Yp ~ NormaI(P Qp, P)
where P, =32 V' and Qy = 20, V' M,

» To update the posterior at time b+ 1 you simply make the
updates Py 1 = Pp+ V, .y and Qpy1 = Qo+ Vi, M 1

» You do not have to store Y} ¢ after these updates

14/45

Sequential Monte Carlo (SMC)/Particle filtering

» SMC is used for non-Gaussian posteriors
> In can be used for streaming data

» It can also be used for a static analysis that passes
through a large dataset sequentially

» SMC only touches each observation once, as opposed to
MCMC that uses the whole dataset each iteration

» We will present the simplest version here, there is a rich
literature on SMC'

'e.g., hitps://link.springer.com/book/10.1007/978-1-4757-3437-9
15/45

Sequential Monte Carlo (SMC)/Particle filtering

» As with MCMC, SMC using samples 61, ...,05 to
approximate the posterior

» We call these “particles”

» Rather than treating the particles as exchangeable as in
MCMC, SMC gives them weights, wy, ..., wg

» We then approximation the posterior using weighted
means, variances, etc

» Particles with small weight are “filtered out”

16/45

How many particles to we need?

> The effective sample size is

ESS — (25821 WS)2
2521 wé

> Best case: ws = wforall sand ESS = n

» Worst case: wy = w > 0and ws =0 for all s > 1 and
ESS =1

> You need ESS in the hundreds

17/45

How to generate the particles?

» A simple approach is prior sampling, 6 i ()

» This will only work well when the prior resembles the
posterior

» Another possibility is to use MCMC from a subset of the
data, e.g., the first batch

» This is slower, but gives larger ESS since the particle
distribution is likely to be more similar to the posterior

18/45

How to weight the particles?
> Say fs = (0s1, ..., Osp) < 7(6)
» Define the weight after batch b as the likelihood

b

Wps = H f(Y¢]0s)

t=1
» The weights can be updated as the data arrive as
Whii,s = Wb,sf(was)

» Only the weights and not the data need be stored
» Posterior summaries are fast to compute, e.g.,

S
(605 >0
PrOb(Qj > 0|Y1,...,Yb) =~ 2321 VI;bs (s>)
Zs:1 Whs

19/45

How to weight the particles?

» Say are MCMC samples from the posterior given the first
batch
01) eeny 03 ~ p(0[Y1)

» Define the weight after batch b > 1 as the likelihood

b

Wps = H f(Y¢]0s)

t=2

» The weights can be updated as the data arrive as

Whi1,s = Wpsf(Yp|Os)

20/45

SMC versus MCMC

n <— 40

Y <- 10

a <-1

b <-1

t <= seg(0,1,1length=1000)
p <- dbetal(t,Y+a,n-Y+b)

plot (t,p,type="1",xlab=expression (theta),
ylab="Posterior")

(Y+a) / (n+a+b) # Exact E (thetalY)
1] 0.2619048

21/45

SMC versus MCMC

Posterior

0.0 0.2 0.4 0.6 0.8 1.0

22/45

SMC

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
[1

versus MCMC

MCMC

set.seed(919)

S <= 50

theta <- rbeta(S,Y+a,n-Y+b)
w <- rep(l,S)

plot (t,p,type="1", xlab=expression (theta),
ylab="Posterior")
points (theta, rep(0,S))
lines (theta,w, type="h")
legend ("topright",c("particle, theta_s",
"weight, w_s"),
pch=c(1,NA), lty=c(NA, 1) ,bty="n")

mean (theta) # Approximate E (thetalY)
] 0.2634136

23/45

SMC versus MCMC

Posterior

o particle, theta_s
— weight, w_s

24/45

SMC

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
[1

versus MCMC

SMC

set.seed (919)

S <- 50

Sample from prior

theta <- rbeta(S,a,b)

Weight by likelihood

w <— 40xdbinom (Y, n, theta)

plot (t,p,type="1",xlab=expression (theta),
ylab="Posterior")

points (theta, rep(0,S))

lines (theta,w, type="h")

legend ("topright",c("particle, theta_s",

"weight, w_s"),
pch=c(1,NA),lty=c(NA,1),bty="n")
sum (wxtheta) /sum(w) # Approx E (thetalY)
] 0.2355692

25/45

SMC versus MCMC

o particle, theta_s
— weight, w_s

Posterior

26/45

How to weight the particles?

» The particles are from the prior and weighted by the
likelihood, so the weighted particles approximate the
posterior

» However, the approximation is poor if ESS is small and
only a few particles have most of the weight

» There are methods to replace low-weight particles with
particles with more support

27/45

Outline

» MAP estimation

» Approximate likelihood

» Divide and Conquer

> Variational Bayes

» Stochastic gradient MCMC

28/45

Variational Bayes (VB)

» VB is popular in the machine learning community

» The main idea is the assume the posterior resides in a
simple class of distributions, and then find the best
approximation to the full posterior in this class

» For example, we might assume that
p(0]Y) ~ H q(;|v))

where q is the normal PDF with parameters v; = (;, aj?)
> All that is left is to solve for the v;

» This is reminiscent of the Bayesian CLT

29/45

Variational Bayes

> Let q(0|v) be the approximate posterior
» The variational parameters are v

» The most common assumption is the mean-field posterior

q(8|v) :H (lv))

©

that assumes posterior independence between the
parameters

» Other approximations are possible, e.g., q could be
multivariate normal with v = {u, X'}

30/45

Variational Bayes

» The variational parameters are selected to minimize the KL
divergence between p and g

_ [10e [9(OV)
Ki(allp) = [1oz | ZG | aton)ce

> Writing p(6]Y) = f(Y|6)x(6)/m(y), KL(ql|p) is
/ log [lm] q(6|v)de + log(m(Y))

» The integral term is the evidence lower bound (ELBO)
» |t can be shown that ELBO < log(m(Y))

» The term log(m(Y)) can be ignored for estimating v and we
minimize the ELBO

31/45

Variational Bayes

» The goal is to find the values of v to minimize

[roe|a6v)
ELBO(v,Y) = /I g [f(Y\G)w(G))} q(6|v)de

» Sometimes the solution for v has a closed form

» More often you use coordinate descent, where you
optimize the elements of v one at a time with the others
held fixed at their current value

» This is similar to MCMC, except each iteration is an
optimization rather than a sample

» Sometimes these univariate updates have a closed-form,
sometimes they require numerical optimization

32/45

Variational Bayes

» VB is generally orders of magnitude faster than MCMC
» Unlike MAP estimation, VB gives a posterior variance

> However, it often underestimates the variance because of
simplifying assuming such as normality and independence

» This may not be a concern for massive datasets

» Often this can be resolved by finding a reparameterization
of the parameters so that the simplifying assumptions hold

33/45

Stochastic gradient descent (SGD)

» MAP and VB estimation often use SGD for large datasets

» The MAP estimator for independent data has the form

Ounp = argmin D~ [og{1()0) + log{x(®)}/

i=1
n
= argmin Z 1(6]Y;)
-
» Similarly, the EB estimator can be written
n
V = argmin Z Q(v]Y))
Voo

» For large n, computing this sum is slow and SGD is faster

34/45

Gradient descent (GD)

» GD is a classic optimization method

> Let V;(0) be the gradient vector of /(4| Y;) with j element

9

T

» The full gradientis V(8) = Y7, V;(6;)

» GD begins with initial value 8y and updates 0 as
Or1 =0t +nV(6:)

» The step-size/learning rate 7 is a tuning parameter

35/45

Stochastic gradient descent (SGD)

» SGD uses random subset of observations to approximate
the gradient

» Let A C {1,...,n} be a random subset of indices with m
elements

> An unbiased estimator of the gradient is

ﬂnv,oznv,o
mg (01) ; (61)

» SGD averages over minibatches of data

{Yj;i e A}

36/45

Stochastic gradient descent (SGD)

SGD begins with initial value 6y and executes E
epochs/iterations with the following steps for epoch t

0 Randomly partition {1, ..., n} to minibatches Ay,...,Ag
1 Set0r = 011+ nirf1 Diea, Vil0r-1)

2 Set O =0+ nii Yiea, Vi(01)

3 ...

B Set 0: = 0; + niir Diea, Vi(0:)

37/45

Stochastic gradient descent (SGD)

» The main tuning parameters are the minibatch size and the
learning rate, n;

» A common minibatch size is often 32 (so B ~ n/32)

» Usually n; decreases with t to balance exploration and
refinement

> It must? satisfy 352, nr = oo and 352, n? < oo

» A common learning rate schedule is n; = ¢/(1 + t) for
tuning parameter ¢

2Robbins-Monro
38/45

SGD extensions

» Line search sets

ne = argmin Y {0 + nV(61)| Vi}
N i€Ap

» AdaGrad adapts the learning rate for individual parameters
, . ~ -1/2
0= 0;_1 + n:Diag [Dlag {H(O)H V(0)

where H(0) = V(0)TV(0) approximates the Hessian

39/45

SGD extensions

» Momentum sets
Orr1 =0t +0:V(0r) + (0 — 01-1)

where tuning parameter a; controls momentum

» Dropout randomly sets some elements of 6; to zero at
each step

» Adaptive Moment Estimation (Adam) combines many of
these ideas and is the most common approach

40/45

Outline

» MAP estimation

» Approximate likelihood

» Divide and Conquer

> Variational Bayes

» Stochastic gradient MCMC

41/45

Stochastic gradient MCMC (SGMCMC)

» MALA and HMC use the posterior's gradient to generate
high-quality candidates for MH sampling

» Computing the gradients is slow when nis large

» SGMCMC approximates the gradient with random
subsamples of the data

» Rather than use the full dataset for the acceptance
probability in an MH step, SGMCMC uses a small step size
and accepts all steps

» You can also use SGMCMC to generate candidates and
the full data for the MH step

42/45

Stochastic gradient MCMC

» We will discuss Langevin dynamics, but the ideas apply to
HMC as well

> The posterior is p(0]Y) o [[]7_4 f(Y;]0)] 7(0)
» Write this as

p(BY) o< exp[-U(0)] = exp [Z Ui(9)]

i=1

where U;(6) = log[f(Y|0)] — log[=(6)]/n

» U(0) is called the potential function

43/45

Stochastic gradient MCMC

» Langevin diffusion satisfies the SDE
1
do(t) = —EVU[O(Z‘)] + dB(t)

where B(t) is Brownian motion

» For initial value 6(0), step size h and Z(t) ~ Normal(0, l,)
o(t+ h) = 6(1) — gvuw(t)] +VhZ(t)

gives samples with stationary distribution ~ p(0|Y)

44/45

Stochastic gradient MCMC

» The gradient term is

VU[e()] =) VUe(t)]
i=1

» SGMCMC uses a random subset of observations to
approximate the gradient

» Say N(t) C {1, ..., n} with m labels selected at random
without replacement for each t

» The gradient term is approximated as

VUIO(1)] ~ Z VU;6(1)]
/GN(t)

> Samples approximately follow p(8]Y) for small h®

Shttps://arxiv.org/abs/1907.06986
45/45

