Part 8

Machine learning

> ST740

North Carolina State University

What is machine learning?

Bayesian nonparametrics (BNP)

- A parametric analysis assumes a fairly simple data-generating model and learning takes place by estimating the parameters
- The model could be purely statistical, e.g., regression
- The model can also by physical, e.g., an epidemiological (SIR) model
- Advantage: parameters are usually interpretable
- Disadvantage: Inference is invalid and predictions are poor if the model is way off

Bayesian nonparametrics

- A nonparametric analysis attempts to avoid assumptions
- For example, if you want to test if two means are equal, do a rank test instead of assuming normality
- Bayesian methods require a likelihood, so some model must be specified
- BNP specifies models that are very flexible, often with infinitely-many parameters

Bayesian nonparametrics

Consider the polynomial regression model

$$
Y_{i} \mid \boldsymbol{\theta} \sim \operatorname{Normal}\left(\beta_{0}+\sum_{j=1}^{J} X_{i}^{j} \beta_{j}, \sigma^{2}\right)
$$

- Parametric: $J=1$ or 2 and you need to verify this fits
- Semiparametric: $J=15$ probably fits almost any function, but you need to tune J
- Nonparametric: $J=\infty$ is the most flexible but requires tricky tricks to implement

Bayesian nonparametrics

- BNP typically replaces priors on parameters with priors on functions
- Example 1: $\mathrm{E}(Y \mid \mathbf{X})=\mu(\mathbf{X})$ is a function from $\mathcal{R}^{p} \rightarrow \mathcal{R}^{1}$
- Gaussian process regression estimates this function assuming only that it is continuous in \mathbf{X}
- Example 2: say the errors $\varepsilon_{i} \sim f$ for some PDF f
- A Dirichlet process mixture of normals prior allows f to be any continuous PDF

Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

High-dimensional linear regression

- Consider the linear regression model with $Y_{i} \mid \boldsymbol{\beta} \sim \operatorname{Normal}\left(\beta_{0}+\sum_{j=1}^{p} X_{i j} \beta_{j}, \sigma^{2}\right)$ for $i=1, \ldots, n$
- A classical analysis has $p \ll n$ and the covariates are chosen based on prior scientific knowledge
- A high-dimensional analysis has p large relative to n
- Example, Y_{i} is the a person's health response and $p=100,000$ genetic markers
- In this $p \gg n$ setting we need new machine learning methods ${ }^{1}$

[^0]
Sparsity priors

- This analysis is impossible without some strong assumptions
- A common assumption is sparsity, i.e., most of the β_{j} are zero
- This assumption is encoded in the prior for the β_{j}
- A sparsity prior should have mass at or near zero and heavy tails
- This simultaneously shrinks irrelevant variables to zero and reduces bias in the important variables

Spike and slab priors

Spike and slab priors

- The most natural prior is a mixture prior,

$$
\pi(\beta)=q \phi\left(\beta ; 0, c_{1}\right)+(1-q) \phi\left(\beta ; 0, c_{0}\right)
$$

where $\phi(x ; m, s)$ is the $\operatorname{Normal}\left(m, s^{2}\right)$ PDF

- The prior probability of inclusion is q
- The prior SD given a variable is included is c_{1}
- The prior SD given a variable is excluded is $c_{0} \ll c_{1}$
- Can set $c_{0}=0$ giving a discrete prior

Spike and slab priors

$$
\begin{aligned}
& \mathrm{c} 1<-1 \\
& \mathrm{c} 0<-0.1 \\
& \mathrm{q}
\end{aligned}<-0.5
$$

beta $<-\operatorname{seq}(-5,5, .001)$
plot (beta, dnorm(beta, 0, c0), col=2, type="l",
ylab="Density")
lines (beta, dnorm (beta, 0, c1) , col=3)
$\operatorname{mix}<-q * \operatorname{dnorm}(\operatorname{beta}, 0, c 1)+(1-q) * \operatorname{dnorm}(\operatorname{beta}, 0, c 0)$ lines (beta, mix, lwd=2)
legend("topright",

$$
\mathrm{c}(\text { "N(0, c1) ", "N(0, c0)", "Mixture") }
$$

$$
\operatorname{lwd}=c(1,1,2), \operatorname{col}=c(3,2,1), b t y=" n ")
$$

Spike and slab priors

Spike and slab priors

- Gibbs sampling can be used

Let $\gamma_{j}=1$ if variable j is included and $\gamma_{j}=0$ otherwise

- The model is

$$
\beta_{j} \mid \gamma_{j} \sim \operatorname{Normal}\left(0, c_{\gamma_{j}}\right)
$$

where $\gamma_{j} \sim \operatorname{Bernoulli}(q)$

- The full conditional distributions of $\beta_{j}, \gamma_{j}, c_{0}, c_{1}$ and q are all conjugate
- However, because of the discrete prior on γ_{j}, convergence can be slow

Spike and slab priors

- The posterior is summarized by the 95% interval for the β_{j} and inclusion probabilities, $\operatorname{Prob}\left(\gamma_{j}=1 \mid \mathbf{Y}\right)$
- You can also compute the most likely model,

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)
$$

however estimating model probabilities is hard with large p

- Bayesian model averaging via MCMC is used for prediction

Continuous shrinkage models

- The discrete form of the spike and slab priors slows convergence
- Continuous mixture priors have been proposed as alternatives
- Global-local skrinkage: $\beta \mid \sigma, \gamma_{0}, \gamma_{j} \sim \operatorname{Normal}\left(0,\left(\sigma \gamma_{0} \gamma_{j}\right)^{2}\right)$
- Global shrinkage is controlled by γ_{0}
- Local shrinkage is controlled by $\gamma_{j} \sim g$ for some mixing distribution g

Horseshoe prior

- The horseshoe prior takes g as $\gamma_{j} \sim$ HalfCauchy
- If \mathbf{X} is the identify matrix and $\gamma_{0}=1$, then

$$
\mathrm{E}\left(\beta_{j} \mid \mathbf{Y}\right)=\left[1-\mathrm{E}\left(\kappa_{j} \mid Y_{j}\right)\right] Y_{j}
$$

- The shrinkage parameter $\kappa_{j}=\frac{1}{1+\gamma_{j}} \sim \operatorname{Beta}(1 / 2,1 / 2)$
- The Beta(1/2,1/2) distribution is shaped like a horseshoe with peaks at 0 and 1
- The induced distribution for β_{j} (over γ_{j}) has mass near zero and heavy tails
- Other shrinkage priors have been proposed

Other continuous shrinkage priors

Taken from Zhang et al,
https://arxiv.org/pdf/1609.00046.pdf

The R2D2 prior

- In our recent work, we proposed the R2-induced Dirichlet Decomposition (R2-D2) prior, ${ }^{2}$
- The prior places a $\operatorname{Beta}(a, b)$ prior on Bayesian R^{2}
- The proportion of variance allocated to each β_{j} follows a Dirichlet (c, \ldots, c) prior
- Small a promotes skrinkage and small c promotes sparsity
- We (well, Zhang) proved posterior consistency for p increasing faster than n

[^1]
Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Gaussian graphical models

- Let $\mathbf{Y}_{i}=\left(Y_{i 1}, \ldots, Y_{i p}\right)^{T}$ be the response for observation $i \in\{1, \ldots, n\}$
- Rather than a response and predictor, we are interested in learning about the relationships between the p variables
- For example, maybe the p variables are genes and we want to uncover a regulatory network
- This might looks like $Y_{i 1} \rightarrow Y_{i 6} \rightarrow Y_{i 3}$
- Other examples: Neuron firing, social-media influencers, congress, etc

Gaussian graphical models

- A Gaussian model is $\mathbf{Y} \sim \operatorname{Normal}(0, \Sigma)$ for $p \times p$ covariance matrix Σ
- The precision matrix $\Omega=\Sigma^{-1}$ has (i, j) element $\omega_{i j}$
- Y_{i} and Y_{j} are correlated conditionally on Y_{k} for all $k \notin\{i, j\}$ if and only if $\omega_{i j} \neq 0$
- So we could put a sparsity prior on the $\omega_{i j}$

Gaussian graphical models

- Constructing a prior for $\omega_{i j}$ is tricky because Ω must be symmetric and positive definite
- Wang ${ }^{3}$ shows that the prior below is valid
- The diagonal elements are

$$
\omega_{i i} \sim \text { Exponential }
$$

- The off-diagonal elements are

$$
\omega_{i j}=\omega_{j i} \sim \text { Mixture of Normals }
$$

[^2]
Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Nonparametric regression

- Let $Y_{i}=\mu\left(\mathbf{X}_{i}\right)+\varepsilon_{i}$ so that

$$
\mathrm{E}\left(Y_{i} \mid \mathbf{X}_{i}\right)=\mu\left(\mathbf{X}_{i}\right)
$$

- A linear model takes the regression function μ to be linear, $\mu\left(\mathbf{X}_{i}\right)=\beta_{0}+\sum_{j=1}^{p} X_{i j} \beta_{j}$
- In the parametric analysis this goal is to estimate the intepretable parameters β_{j}
- Nonparametric regression attempts to estimate the regression function μ without strong assumptions
- The goal is to estimate a function μ rather than scalars β_{j}

Nonparametric regression

```
dat <- read.csv(url("https://www4.stat.ncsu.edu/
    ~bjreich/ST740/hurricanes.csv"))
year <- dat[,1]
ACE <- dat[year>1949,8]
year <- year[year>1949]
lo <- loess(ACE~year)
plot(lo,xlab="X = Year",ylab="Y = ACE")
lines(lo$x,lo$fitted)
legend("topleft",c("Y",expression(mu(X))),
    pch=c(1,NA),lty=c(NA,1),bty="n")
```


Nonparametric regression

Accumulated Cyclone Energy (ACE) in the North Atlantic ${ }^{4}$
${ }^{4}$ http://tropical.atmos.colostate.edu/Realtime/index. php?arch\&loc=northatlantic

Nonparametric regression

- We will specify priors on the function $\mu(\mathbf{X})$
- For example, say $p=1$ and we use polynomial regression,

$$
f(X)=\beta_{0}+\sum_{j=1}^{m} X^{j} \beta_{j}
$$

- This depends on m and parameters $\boldsymbol{\beta}_{m}=\left(\beta_{0}, \ldots, \beta_{m}\right)$
- The flexibility of the model is determined by its span
- For polynomial regression the span is the class of infinitely-differential functions, C
- Say the true regression function is $\mu_{0} \in \mathcal{C}$, then there exists m and $\boldsymbol{\beta}_{m}$ so that $\mu(X) \approx \mu_{0}(X)$ for all X
- All models we will discuss span this (or similar) space ${ }^{5}$

[^3]
Nonparametric regression

- Bayesian NP regression uses many of the same models/ideas as classical NP regression
- The advantage of Bayesian methods are incorporation of prior information and uncertainty quantification
- Classical approaches often resort to plug-in estimators (e.g., the correlation parameters of a Gaussian process)
- In deep learning, Bayesian methods are the primary method for prediction intervals

Spline basis expansion

- A spline approximation (here $p=1$) is

$$
\mu(X) \approx \beta_{0}+\sum_{j=1}^{m} B_{j}(X) \beta_{j}
$$

where $B_{j}(X)$ are fixed spline basis function and β_{j} are parameters to be estimated

- This expansion constructs m functions B_{j} to explain the effect of one variable, X
- There are many possibilities for B_{j}; we will use b-splines
- These are sparse piece-wise quadratic (by default) functions

Bias-variance trade-off

- The β_{j} can be estimated by linear regression
- Large m can approximate any continuously differentiable function, but risks over-fitting
- Small m is more stable, but risks bias of the true μ is outside the span of the B_{j}
- Selecting m is critical

Nonparametric regression

```
library(splines)
\(\mathrm{m}<-5\)
B <- bs (year, df=m, intercept=TRUE)
dim(B)
[1] 755
matplot(year, \(B, t y p e=" l ", l t y=1\),
        main=paste("m =",m,"basis functions"))
fit <- lm(ACE~B-1)
plot(year, ACE, main=
    paste("m =",m,"basis functions"))
lines (year, \(B \% * \% f i t \$ c o e f)\)
```


Spline regression

$m=5$ basis functions

Spline regression

$m=5$ basis functions

Spline regression

$m=10$ basis functions

Spline regression

Spline regression

Spline regression

Spline regression

$\mathrm{m}=\mathbf{2 0}$ basis functions

Spline regression

Bias-variance trade-off

- The typical Bayesian approach ${ }^{6}$ is to select m large enough to avoid bias, say $m=n$
- We then use priors to regulate the β_{j} and avoid overfitting
- The results on the next slides take $\beta_{j} \mid \tau \sim \operatorname{Normal}\left(0, \tau^{2}\right)$ with $\tau \sim \operatorname{InvG}$
- More sophisticated priors can be used, e.g., sparsity priors or priors with correlation across j
${ }^{6}$ Frequentists do similar things, often called "smoothing splines"

Bayesian spline regression

Bayes fit with $m=5$

Bayesian spline regression

Bayes fit with $m=5$

Bayesian spline regression

Bayes fit with $\mathbf{m}=10$

Bayesian spline regression

Bayes fit with $\mathbf{m}=15$

Bayesian spline regression

Bayes fit with $\mathbf{m}=\mathbf{2 0}$

Bayesian spline regression

- If it is known that $\mu(X)$ is increasing in X, this can be incorporated in the prior
- For the \mathbf{b}-splines, if $\beta_{1}<\ldots<\beta_{m}$ then $\mu(X)$ is increasing
- You can also study the derivative

$$
\frac{d \mu(X)}{d X}=\sum_{j=1}^{m} \frac{d B_{j}(X)}{d X} \beta_{j}
$$

- It turns out that $d B_{j}(X) / d X$ is also a b-spline
- The next slide shows this function for the ACE data

Bayesian spline regression

Generalized additive models (GAMs)

- Extending spline regression for large p suffers from the curse of dimensionality
- If we desire a model for μ that can approximate any function on $\mathbf{X} \in \mathcal{R}^{p}$, we need m^{p} terms

$$
\mu(\mathbf{X})=\beta_{0}+\sum_{j_{1}=1}^{m} \ldots \sum_{j_{p}=1}^{m} B_{j}\left(X_{1}\right) \cdot \ldots \cdot B_{p}\left(X_{p}\right) \beta_{j_{1}, \ldots, j_{p}}
$$

- This has too many parameters for even moderate p

Generalized additive models (GAMs)

- GAMs reduce the dimension by assuming an additivity
- The main effects model is

$$
\mu(\mathbf{X})=\beta_{0}+\sum_{j=1}^{p} f_{j}\left(X_{j}\right)
$$

- Each of the p function has m terms,

$$
f_{j}\left(X_{j}\right)=\sum_{l=1}^{m} B_{j l}\left(X_{j}\right) \beta_{j l}
$$

- Prior might be $\beta_{j l} \sim \operatorname{Normal}\left(0, \tau_{j}^{2}\right)$ with $\tau_{j} \sim \operatorname{InvG}$
- This model has $p m \ll m^{p}$ terms and is interpretable

Generalized additive models (GAMs)

- A second-order model is

$$
\mu(\mathbf{X})=\beta_{0}+\sum_{j=1}^{p} f_{j}\left(X_{j}\right)+\sum_{j<k}^{p} f_{j k}\left(X_{j}, X_{k}\right)
$$

- The interaction terms are

$$
f_{j k}\left(X_{j}, X_{k}\right)=\sum_{u=1}^{m} \sum_{v=1}^{m} B_{u}\left(X_{j}\right) B_{v}\left(X_{k}\right) \beta_{u v / k}
$$

- This now has many parameters
- Wei et al ${ }^{7}$ propose a Bayesian variable selection prior for additive models (priors with mass at $\tau_{j}=0$)

[^4]
Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Bayesian additive regression trees (BART)

- GAMs are efficient and interpretable, but struggle with high-order interactions
- In this sense they are not really nonparameteric because the can only fit a small class of regression functions
- Regression trees offer a simple way to handle high-order interactions
- Random forests are a classic way to fit tree models
- BART is a Bayesian alternative

Bayesian additive regression trees (BART)

- A tree model can also be written

$$
\mu(\mathbf{X})=\sum_{l=1}^{m} B_{l}(\mathbf{X}) \beta_{l}
$$

with $\beta_{I} \sim \operatorname{Normal}\left(0, \tau^{2}\right)$

- However, the $B_{l}(\mathbf{X})$ are now leaves
- Example with $m=3$:
- $B_{1}(\mathbf{X})=I\left(X_{4}<0.5\right)$
- $B_{2}(\mathbf{X})=I\left(X_{4}>0.5\right) I\left(X_{9}<1.3\right)$
- $B_{3}(\mathbf{X})=I\left(X_{4}>0.5\right) I\left(X_{9}>1.3\right)$

Small tree

Larger tree

Bayesian additive regression trees (BART)

- The variable (X_{4}) and threshold (0.5) in each branch $\left(X_{4}<0.5\right)$ are unknown
- A Bayesian analysis puts priors on these, as well as the β_{j}
- BART averages over multiple trees

$$
\mu(\mathbf{X})=\sum_{k=1}^{K} \mu_{k}(\mathbf{X})
$$

where each μ_{k} is a tree with its own parameters

- This is challenging but implemented in the R package BART

Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Gaussian process (GP) regression

- GP regression views $\mu(\mathbf{X})$ as a random function over $\mathbf{X} \in \mathcal{R}^{p}$
- The process μ is a GP if and only if all finite-dimensional distributions are MVN

$$
\mu_{n}=\left[\mu\left(\mathbf{X}_{1}\right), \ldots, \mu\left(\mathbf{X}_{n}\right)\right]^{T} \sim \operatorname{Normal}(\mathbf{m}, \Sigma)
$$

- A GP is defined by its mean and covariance functions
- Typically the mean function is constant $\mathrm{E}\left[\mu\left(\mathbf{X}_{i}\right)\right]=m_{i}=\beta_{0}$
- The covariance function is often

$$
\Sigma_{i j}=\operatorname{Cov}\left[\mu\left(\mathbf{X}_{i}\right), \mu\left(\mathbf{X}_{j}\right)\right]=\tau^{2} \exp \left[-\left(d_{i j} / \phi\right)^{2}\right]
$$

for distance $d_{i j}=\left\|\mathbf{X}_{i}-\mathbf{X}_{j}\right\|$

Gaussian process (GP) regression

Gaussian process (GP) regression

- The unknown parameters are $\boldsymbol{\theta}=\left\{\boldsymbol{\beta}, \sigma^{2}, \tau^{2}, \phi\right\}$
- The hierarchical model for $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ is

$$
\mathbf{Y} \mid \boldsymbol{\mu}_{n}, \boldsymbol{\theta} \sim \operatorname{Normal}\left(\boldsymbol{\mu}_{n}, \sigma^{2} \mathbf{I}_{n}\right) \quad \text { and } \quad \boldsymbol{\mu}_{n} \mid \boldsymbol{\theta} \sim \operatorname{Normal}(\mathbf{m}, \Sigma)
$$

- The model for \mathbf{Y} marginal over $\boldsymbol{\mu}$, is

$$
\mathbf{Y} \mid \boldsymbol{\theta} \sim \operatorname{Normal}\left[\mathbf{m}(\boldsymbol{\theta}), \Sigma(\boldsymbol{\theta})+\sigma^{2} \mathbf{I}_{n}\right]
$$

- This is used to obtain the posterior of θ via MCMC
- This is slow for large n

Gaussian process (GP) regression

- The predictive distribution of $\mu\left(X_{n+1}\right)$ given \mathbf{Y} is

$$
\mu\left(X_{n+1}\right) \mid \mathbf{Y}, \boldsymbol{\theta} \sim \operatorname{Normal}\left(m_{n+1}+P(\mathbf{Y}-\mathbf{m}), s^{2}\right)
$$

- The mean operator is $P=\operatorname{Cov}\left(\mu\left(X_{n+1}\right), \mathbf{Y}\right) \Sigma^{-1}$
- The prediction variance is

$$
s^{2}=\operatorname{Var}\left[\mu\left(X_{n+1}\right)\right]-\operatorname{Cov}\left[\mu\left(X_{n+1}\right), \mathbf{Y}\right] \Sigma^{-1} \operatorname{Cov}\left[\mathbf{Y}, \mu\left(X_{n+1}\right)\right]
$$

- Both depend on $\boldsymbol{\theta}$, so samples of $\mu\left(X_{n+1}\right)$ are drawn from the PPD using MCMC
- PPD samples for Y_{n+1} add σ^{2} to s^{2}

Gaussian process (GP) regression

```
yearp <- seq(1950,2010,0.1)
np <- length(yearp)
sig2 <- 0.8*var(ACE) # Fixed for illustration
tau2 <- 0.2*var(ACE)
beta <- mean(ACE)
phi <- 5
d <- as.matrix(dist(year))
SigInv <- solve(sig2*diag(n)+
    tau2*exp(-(d/phi)^2))
```


Gaussian process (GP) regression

```
m <- v <- rep (0,np)
for(i in 1:np){
    dp <- abs(yearp[i] - year)
    Sp <- tau2*exp(-(dp/phi)^2)
    m[i] <- beta + Sp%*%SigInv%*%(ACE-beta)
    v[i] <- tau2 - t(Sp)%*%SigInv%*%Sp
}
plot(year,ACE,xlim=range(yearp))
lines(yearp,m,lwd=2)
lines(yearp,m-2*sqrt(v),lty=2)
lines(yearp,m+2*sqrt(v),lty=2)
```


Gaussian process (GP) regression

Gaussian process (GP) regression

- An anisotropic model allows variables to have different influence

$$
\operatorname{Cov}\left[\mu\left(\mathbf{X}_{i}\right), \mu\left(\mathbf{X}_{k}\right)\right]=\exp \left(-\sum_{j=1}^{p} \psi_{j}\left(X_{i j}-X_{k j}\right)^{2}\right)
$$

- If $\psi_{j}=0$ covariate j is removed from the model
- A prior with mass at zero performs variable selection

Gaussian process (GP) regression

- In my opinion, GP is the gold standard for prediction for moderate p
- However, it is often very slow for even moderate n
- Computing $|\Sigma|$ and Σ^{-1} are bottlenecks
- Extending GPs to large n is an active area of research
- BART and deep learning are faster

Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Deep learning

- We will discuss only a feed-forward neural network (FFNN)
- This assumes unstructured covariates like the other NP regression methods
- Deep learning is most powerful for structured covariates like images (CNN) or text (RNN)
- Deep learning architectures differ for these cases, but the Bayesian implementation is the same

Shallow learning

- FFNN starts with linear combinations (neurons) of the covariates (inputs)
- For neuron $I \in\{1, \ldots, L\}$, let

$$
Z_{l}=b_{l}+\sum_{j=1}^{p} W_{j l} X_{j}
$$

- This depends on the intercept (bias) b_{l} and slopes (weights) $W_{j l}$
- Non-linearity is introduced via the activation function ϕ, e.g., $\phi(x)=\operatorname{expit}(x)$ or $\phi=x_{+}$
- In a GLM with link function g, the model is

$$
g[\mathrm{E}(Y \mid \mathbf{X})]=\beta_{0}+\sum_{l=1}^{L} \phi\left(Z_{l}\right) \beta_{l}
$$

Deep learning

Deep learning adds K hidden layers

- Input layer: $Z_{l}^{(0)}=b_{l}^{(0)}+\sum_{j=1}^{p} W_{j l}^{(0)} X_{j}$ for $I \in\left\{1, \ldots, L_{0}\right\}$
- Hidden layer 1: $Z_{l}^{(1)}=b_{l}^{(1)}+\sum_{j=1}^{L_{0}} W_{j l}^{(1)} \phi_{1}\left(Z_{l}^{(0)}\right)$ for $I \in\left\{1, \ldots, L_{1}\right\}$
- Hidden layer $K: Z_{l}^{(K)}=b_{l}^{(K)}+\sum_{j=1}^{L_{K-1}} W_{j l}^{(K)} \phi_{K}\left(Z_{l}^{(K-1)}\right)$ for $I \in\left\{1, \ldots, L_{K}\right\}$
- Output layer:

$$
g[\mathrm{E}(Y \mid \mathbf{X})]=b^{(K+1)}+\sum_{l=1}^{L_{K}} \phi_{K+1}\left(Z_{l}^{(K)}\right) W_{l}^{(K+1)}
$$

This spans \mathcal{C} for large L, even with $K=0$ hidden layers

Deep learning

- We need to estimate $\theta=\left\{b^{(0)}, \ldots, b^{(K+1)}, W^{(0)}, \ldots, W^{(K+1)}\right\}$
- A classical analysis selects θ to minimize an objective function, e.g., SSE or cross entropy
- As we've seen, this is equivalent to MAP estimation under a Gaussian or logistic regression model
- Classical analysis uses stochastic gradient descent, Bayesian uses MAP, HMC, SGMCMC or VB
- Classical analysis uses dropout to avoid overfitting, Bayesian uses (sparsity) priors

Variable selection

- SSVS/shrinkage priors can be used for variable selection
- If $W_{j l}^{(0)}=0$ for all I then X_{j} is removed from the model
- SSVS prior: $W_{j l}^{(0)}=\delta_{j} w_{j l}^{(0)}$ for $\delta_{j} \sim$ Bernoulli and $w_{j l}^{(0)} \sim$ Normal
- Horseshoe prior: $W_{j l}^{(0)} \sim \operatorname{Normal}\left(0, \delta_{j}^{2} \sigma_{0}^{2}\right)$ with $\delta_{j} \sim$ HalfCauchy

Empirical Bayesian deep learning

- A frequentist analysis does not provide prediction uncertainty
- A full Bayesian analysis does, but it slow
- An empirical Bayesian analysis is a hybrid
- You first analyze the data using stochastic gradient descent and fix the parameters in the input and (some of) the hidden layers
- With these parameters fixed, you then conduct a shallow Bayesian analysis using MCMC

Deep Gaussian process approximation

- Another way to obtain prediction uncertainty is a GP approximation
- Consider even the shallow model
- $Z_{I}=b_{l}+\sum_{j=1}^{p} W_{j l} X_{j}$
- $g[\mathrm{E}(Y \mid \mathbf{X})]=\eta(\mathbf{X})=\beta_{0}+\sum_{l=1}^{L} \phi\left(Z_{l}\right) \beta_{l}$
- If the $b_{l}, W_{j p}$ and β_{l} have normal priors, then $\eta(\mathbf{X})$ is approximately a GP for large L
- The covariance function is determined by ϕ and the prior variances

Outline

- High-dimensional data
- Linear regression
- Networks
- Nonparametric regression
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Models for a density/distribution function

- We now have several flexible models a mean function
- A Bayesian model needs a full likelihood, not just the mean
- A nonparametric regression model is

$$
Y_{i}=\mu\left(\mathbf{X}_{i}\right)+\varepsilon_{i}
$$

where the error distribution is $\varepsilon_{i} \sim f$ for distribution f

- A parametric model selects a family for f, say Gaussian
- A full NP Bayesian puts a prior on f
- Challenging because $f(e) \geq 0$ and $\int f(e) d e=1$

Semiparametric model

- A semiparametric model is a finite-mixture of normal
- The model is

$$
f(e)=\sum_{j=1}^{m} q_{j} \phi\left(e ; \gamma_{j}, \sigma^{2}\right)
$$

where ϕ is the Gaussian PDF

- Usually the probabilities have prior $q=\left(q_{1}, \ldots, q_{m}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$
- The means γ_{j} can be fixed on a grid, or given prior $\gamma_{j} \sim \operatorname{Normal}\left(0, \tau^{2}\right)$
- Increasing m can approximate any continuous PDF

Semiparametric model

- An alternative is a random histogram
- The model is

$$
f(e)=\sum_{j=1}^{m} q_{j} U\left(e ; b_{j}, b_{j+1}\right)
$$

where U is the uniform PDF with fixed break points b_{j}

- The probabilities have prior $\left(q_{1}, \ldots, q_{m}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$

Semiparametric model

- The hyperparameters α_{j} determine the prior
- Let $\alpha_{j}=c f_{0 j}$ for $c>0$ and $\sum_{j=1}^{m} f_{0 j}=1$
- Then prior mean is $\mathrm{E}\left(q_{j}\right)=f_{0 j}$
- The prior variance is $\mathrm{V}\left(q_{j}\right)=f_{0 j}\left(1-f_{0 j}\right) /(c+1)$
- Select $f_{0 j}$ can be based on a parametric model
- If the base distribution is standard normal then

$$
f_{0 j}=\int_{b_{j}}^{b_{j+1}} \phi(x) d x
$$

- The concentration parameter c control prior strength

Dirichlet process prior (DPP)

- The DPP is a prior on a distribution function $F(e)$
- The base distribution is usually a parametric model, and can even have unknown parameters
- All draws from the prior are valid CDFs
- The prior support is $F \in \mathcal{C}$ where \mathcal{C} is the collection all valid CDFs
- The DP has two hyperparameters: the base distribution $F_{0}(e)(a C D F)$ and concentration parameter $c>0$

Dirichlet process prior (DPP)

- Like a GP, a DPP is defined by its finite-dimensional distributions
- Let $-\infty=b_{1}<\ldots<b_{m+1}=\infty$ be an arbitrary set of breakpoints
- Define the probability in the intervals for the DPP as

$$
P_{j}=F\left(b_{j+1}\right)-F\left(b_{j}\right)
$$

- F follows a DPP if and only if

$$
\left(P_{1}, \ldots, P_{m}\right) \sim \operatorname{Dirichlet}\left(c f_{01}, \ldots, c f_{0 m}\right)
$$

for $f_{0 j}=F_{0}\left(b_{j+1}\right)-F_{0}\left(b_{j}\right)$

Dirichlet process prior (DPP)

- One way to draw approximate realizations is the stick-breaking representation
- The PMF corresponding to $F(e)$ can be written

$$
f(e)=\sum_{j=1}^{\infty} p_{j} l\left(e=\gamma_{j}\right)
$$

- The locations have prior $\gamma_{j} \sim f_{0}$
- The probabilities are $p_{1}=v_{1}$ and for $j>1$

$$
p_{j}=v_{j} \prod_{k=1}^{j-1}\left(1-v_{k}\right)=v_{j}\left(1-\sum_{k=1}^{j-1} p_{k}\right)
$$

and $v_{j} \sim \operatorname{Beta}(1, c)$

Dirichlet process prior (DPP)

Derivation

Dirichlet process prior (DPP)

- For plotting and analysis, the infinite mixture can be truncated by setting $v_{m}=1$ giving

$$
f(e)=\sum_{j=1}^{m} p_{j} l\left(e=\gamma_{j}\right)
$$

- The number of terms m set so that $\mathrm{E}\left(p_{m}\right)$ is small
- Another issue is that the DPP produces a discrete PMF
- A DP mixture of normals is continuous

$$
f(e)=\sum_{j=1}^{m} p_{j} \phi\left(e ; \gamma_{j}, \sigma^{2}\right)
$$

where p_{j} and γ_{i} have priors as in the DPP

Other priors

- DPP can be generalized with different priors for the v_{j}, e.g., the Pitman-Yor process
- Finite mixtures model can be extended by having the number of terms, m, follow a Poisson prior
- The Polya tree prior is a tree-based prior for a PDF
- Density regression allows the mixture locations and/or probabilities to depend on covariates,

$$
f(e ; x)=\sum_{j} p_{j}(x) \phi\left(e ; \lambda_{j}(x), \sigma^{2}\right)
$$

[^0]: ${ }^{1}$ Handbook of Bayesian Variable Selection (2021) by Tadesse and Vannucci provide a recent review

[^1]: ${ }^{2}$ Zhang, Naughton, Bondell, Reich (2022). Bayesian Regression Using a Prior on the Model Fit: The R2-D2 Shrinkage Prior. JASA

[^2]: ${ }^{3}$ Wang H (2015). Scaling it up: stochastic search structure learning in graphical models. Bayesian Analysis

[^3]: ${ }^{5}$ In deep learning this is called the "universal approximation theorem"

[^4]: ${ }^{7}$ Wei, Reich, Hoppin, Ghoshal (2020). Sparse Bayesian additive nonparametric regression with application to health effects of pesticides mixtures. Statistica Sinica.

