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What is machine learning?

2 / 86



Bayesian nonparametrics (BNP)

▶ A parametric analysis assumes a fairly simple
data-generating model and learning takes place by
estimating the parameters

▶ The model could be purely statistical, e.g., regression

▶ The model can also by physical, e.g., an epidemiological
(SIR) model

▶ Advantage: parameters are usually interpretable

▶ Disadvantage: Inference is invalid and predictions are poor
if the model is way off
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Bayesian nonparametrics

▶ A nonparametric analysis attempts to avoid assumptions

▶ For example, if you want to test if two means are equal, do
a rank test instead of assuming normality

▶ Bayesian methods require a likelihood, so some model
must be specified

▶ BNP specifies models that are very flexible, often with
infinitely-many parameters
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Bayesian nonparametrics

Consider the polynomial regression model

Yi |θ ∼ Normal

β0 +
J∑

j=1

X j
i βj , σ

2


▶ Parametric: J = 1 or 2 and you need to verify this fits

▶ Semiparametric: J = 15 probably fits almost any function,
but you need to tune J

▶ Nonparametric: J = ∞ is the most flexible but requires
tricky tricks to implement
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Bayesian nonparametrics

▶ BNP typically replaces priors on parameters with priors on
functions

▶ Example 1: E(Y |X) = µ(X) is a function from Rp → R1

▶ Gaussian process regression estimates this function
assuming only that it is continuous in X

▶ Example 2: say the errors εi ∼ f for some PDF f

▶ A Dirichlet process mixture of normals prior allows f to be
any continuous PDF
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Outline

▶ High-dimensional data
▶ Linear regression
▶ Networks

▶ Nonparametric regression
▶ Generalized additive models
▶ Bayesian additive regression trees
▶ Gaussian process regression
▶ Bayesian deep learning

▶ Prior for a density function
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High-dimensional linear regression

▶ Consider the linear regression model with
Yi |β ∼ Normal

(
β0 +

∑p
j=1 Xijβj , σ

2
)

for i = 1, ...,n

▶ A classical analysis has p << n and the covariates are
chosen based on prior scientific knowledge

▶ A high-dimensional analysis has p large relative to n

▶ Example, Yi is the a person’s health response and
p = 100,000 genetic markers

▶ In this p >> n setting we need new machine learning
methods1

1Handbook of Bayesian Variable Selection (2021) by Tadesse and
Vannucci provide a recent review
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Sparsity priors

▶ This analysis is impossible without some strong
assumptions

▶ A common assumption is sparsity, i.e., most of the βj are
zero

▶ This assumption is encoded in the prior for the βj

▶ A sparsity prior should have mass at or near zero and
heavy tails

▶ This simultaneously shrinks irrelevant variables to zero and
reduces bias in the important variables
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Spike and slab priors
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Spike and slab priors

▶ The most natural prior is a mixture prior,

π(β) = qϕ(β;0, c1) + (1 − q)ϕ(β;0, c0)

where ϕ(x ;m, s) is the Normal(m, s2) PDF

▶ The prior probability of inclusion is q

▶ The prior SD given a variable is included is c1

▶ The prior SD given a variable is excluded is c0 << c1

▶ Can set c0 = 0 giving a discrete prior
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Spike and slab priors
c1 <- 1
c0 <- 0.1
q <- 0.5

beta <- seq(-5,5,.001)

plot(beta,dnorm(beta,0,c0),col=2,type="l",
ylab="Density")

lines(beta,dnorm(beta,0,c1),col=3)

mix <- q*dnorm(beta,0,c1)+(1-q)*dnorm(beta,0,c0)
lines(beta,mix,lwd=2)

legend("topright",
c("N(0,c1)","N(0,c0)","Mixture"),
lwd=c(1,1,2),col=c(3,2,1),bty="n")
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Spike and slab priors
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Spike and slab priors

▶ Gibbs sampling can be used

▶ Let γj = 1 if variable j is included and γj = 0 otherwise

▶ The model is
βj |γj ∼ Normal

(
0, cγj

)
where γj ∼ Bernoulli(q)

▶ The full conditional distributions of βj , γj , c0, c1 and q are
all conjugate

▶ However, because of the discrete prior on γj , convergence
can be slow
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Spike and slab priors

▶ The posterior is summarized by the 95% interval for the βj
and inclusion probabilities, Prob(γj = 1|Y)

▶ You can also compute the most likely model,

γ = (γ1, ..., γp)

however estimating model probabilities is hard with large p

▶ Bayesian model averaging via MCMC is used for prediction
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Continuous shrinkage models

▶ The discrete form of the spike and slab priors slows
convergence

▶ Continuous mixture priors have been proposed as
alternatives

▶ Global-local skrinkage: β|σ, γ0, γj ∼ Normal
(
0, (σγ0γj)

2)
▶ Global shrinkage is controlled by γ0

▶ Local shrinkage is controlled by γj ∼ g for some mixing
distribution g
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Horseshoe prior

▶ The horseshoe prior takes g as γj ∼ HalfCauchy

▶ If X is the identify matrix and γ0 = 1, then

E(βj |Y) = [1 − E(κj |Yj)]Yj

▶ The shrinkage parameter κj =
1

1+γj
∼ Beta(1/2,1/2)

▶ The Beta(1/2,1/2) distribution is shaped like a horseshoe
with peaks at 0 and 1

▶ The induced distribution for βj (over γj ) has mass near zero
and heavy tails

▶ Other shrinkage priors have been proposed
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Other continuous shrinkage priors

Taken from Zhang et al,
https://arxiv.org/pdf/1609.00046.pdf
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The R2D2 prior

▶ In our recent work, we proposed the R2-induced Dirichlet
Decomposition (R2-D2) prior,2

▶ The prior places a Beta(a,b) prior on Bayesian R2

▶ The proportion of variance allocated to each βj follows a
Dirichlet(c, ..., c) prior

▶ Small a promotes skrinkage and small c promotes sparsity

▶ We (well, Zhang) proved posterior consistency for p
increasing faster than n

2Zhang, Naughton, Bondell, Reich (2022). Bayesian Regression Using a
Prior on the Model Fit: The R2-D2 Shrinkage Prior. JASA
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Outline

▶ High-dimensional data
▶ Linear regression
▶ Networks

▶ Nonparametric regression
▶ Generalized additive models
▶ Bayesian additive regression trees
▶ Gaussian process regression
▶ Bayesian deep learning

▶ Prior for a density function
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Gaussian graphical models

▶ Let Yi = (Yi1, ...,Yip)
T be the response for observation

i ∈ {1, ...,n}

▶ Rather than a response and predictor, we are interested in
learning about the relationships between the p variables

▶ For example, maybe the p variables are genes and we
want to uncover a regulatory network

▶ This might looks like Yi1 → Yi6 → Yi3

▶ Other examples: Neuron firing, social-media influencers,
congress, etc
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Gaussian graphical models

▶ A Gaussian model is Y ∼ Normal(0,Σ) for p × p
covariance matrix Σ

▶ The precision matrix Ω = Σ−1 has (i , j) element ωij

▶ Yi and Yj are correlated conditionally on Yk for all k /∈ {i , j}
if and only if ωij ̸= 0

▶ So we could put a sparsity prior on the ωij
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Gaussian graphical models

▶ Constructing a prior for ωij is tricky because Ω must be
symmetric and positive definite

▶ Wang3 shows that the prior below is valid

▶ The diagonal elements are

ωii ∼ Exponential

▶ The off-diagonal elements are

ωij = ωji ∼ Mixture of Normals

3Wang H (2015). Scaling it up: stochastic search structure learning in
graphical models. Bayesian Analysis
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Outline

▶ High-dimensional data
▶ Linear regression
▶ Networks

▶ Nonparametric regression
▶ Generalized additive models
▶ Bayesian additive regression trees
▶ Gaussian process regression
▶ Bayesian deep learning

▶ Prior for a density function
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Nonparametric regression

▶ Let Yi = µ(Xi) + εi so that

E(Yi |Xi) = µ(Xi)

▶ A linear model takes the regression function µ to be linear,
µ(Xi) = β0 +

∑p
j=1 Xijβj

▶ In the parametric analysis this goal is to estimate the
intepretable parameters βj

▶ Nonparametric regression attempts to estimate the
regression function µ without strong assumptions

▶ The goal is to estimate a function µ rather than scalars βj

25 / 86



Nonparametric regression

dat <- read.csv(url("https://www4.stat.ncsu.edu/
~bjreich/ST740/hurricanes.csv"))

year <- dat[,1]
ACE <- dat[year>1949,8]
year <- year[year>1949]
lo <- loess(ACE~year)

plot(lo,xlab="X = Year",ylab="Y = ACE")
lines(lo$x,lo$fitted)
legend("topleft",c("Y",expression(mu(X))),

pch=c(1,NA),lty=c(NA,1),bty="n")
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Nonparametric regression
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Accumulated Cyclone Energy (ACE) in the North Atlantic 4
4http://tropical.atmos.colostate.edu/Realtime/index.

php?arch&loc=northatlantic
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Nonparametric regression
▶ We will specify priors on the function µ(X)

▶ For example, say p = 1 and we use polynomial regression,

f (X ) = β0 +
m∑

j=1

X jβj

▶ This depends on m and parameters βm = (β0, ..., βm)

▶ The flexibility of the model is determined by its span

▶ For polynomial regression the span is the class of
infinitely-differential functions, C

▶ Say the true regression function is µ0 ∈ C, then there exists
m and βm so that µ(X ) ≈ µ0(X ) for all X

▶ All models we will discuss span this (or similar) space 5

5In deep learning this is called the “universal approximation theorem”
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Nonparametric regression

▶ Bayesian NP regression uses many of the same
models/ideas as classical NP regression

▶ The advantage of Bayesian methods are incorporation of
prior information and uncertainty quantification

▶ Classical approaches often resort to plug-in estimators
(e.g., the correlation parameters of a Gaussian process)

▶ In deep learning, Bayesian methods are the primary
method for prediction intervals
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Spline basis expansion

▶ A spline approximation (here p = 1) is

µ(X ) ≈ β0 +
m∑

j=1

Bj(X )βj

where Bj(X ) are fixed spline basis function and βj are
parameters to be estimated

▶ This expansion constructs m functions Bj to explain the
effect of one variable, X

▶ There are many possibilities for Bj ; we will use b-splines

▶ These are sparse piece-wise quadratic (by default)
functions
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Bias-variance trade-off

▶ The βj can be estimated by linear regression

▶ Large m can approximate any continuously differentiable
function, but risks over-fitting

▶ Small m is more stable, but risks bias of the true µ is
outside the span of the Bj

▶ Selecting m is critical
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Nonparametric regression

library(splines)
m <- 5
B <- bs(year,df=m,intercept=TRUE)
dim(B)
[1] 75 5

matplot(year,B,type="l",lty=1,
main=paste("m =",m,"basis functions"))

fit <- lm(ACE~B-1)

plot(year,ACE,main=
paste("m =",m,"basis functions"))

lines(year,B%*%fit$coef)

32 / 86



Spline regression
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Spline regression
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Spline regression
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Spline regression
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Spline regression
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Spline regression
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Spline regression
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Spline regression
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Bias-variance trade-off

▶ The typical Bayesian approach6 is to select m large
enough to avoid bias, say m = n

▶ We then use priors to regulate the βj and avoid overfitting

▶ The results on the next slides take βj |τ ∼ Normal(0, τ2)
with τ ∼ InvG

▶ More sophisticated priors can be used, e.g., sparsity priors
or priors with correlation across j

6Frequentists do similar things, often called “smoothing splines”
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Bayesian spline regression
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Bayesian spline regression
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Bayesian spline regression
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Bayesian spline regression
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Bayesian spline regression
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Bayesian spline regression

▶ If it is known that µ(X ) is increasing in X , this can be
incorporated in the prior

▶ For the b-splines, if β1 < ... < βm then µ(X ) is increasing

▶ You can also study the derivative

dµ(X )

dX
=

m∑
j=1

dBj(X )

dX
βj

▶ It turns out that dBj(X )/dX is also a b-spline

▶ The next slide shows this function for the ACE data
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Bayesian spline regression

1950 1960 1970 1980 1990 2000 2010 2020

−
40

−
30

−
20

−
10

0
10

20

Year

D
er

iv
ia

tiv
e 

of
 m

u(
ye

ar
)

48 / 86



Generalized additive models (GAMs)

▶ Extending spline regression for large p suffers from the
curse of dimensionality

▶ If we desire a model for µ that can approximate any
function on X ∈ Rp, we need mp terms

µ(X) = β0 +
m∑

j1=1

...
m∑

jp=1

Bj(X1) · ... · Bp(Xp)βj1,...,jp

▶ This has too many parameters for even moderate p

49 / 86



Generalized additive models (GAMs)

▶ GAMs reduce the dimension by assuming an additivity

▶ The main effects model is

µ(X) = β0 +

p∑
j=1

fj(Xj)

▶ Each of the p function has m terms,

fj(Xj) =
m∑

l=1

Bjl(Xj)βjl

▶ Prior might be βjl ∼ Normal(0, τ2
j ) with τj ∼ InvG

▶ This model has pm << mp terms and is interpretable
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Generalized additive models (GAMs)

▶ A second-order model is

µ(X) = β0 +

p∑
j=1

fj(Xj) +

p∑
j<k

fjk (Xj ,Xk )

▶ The interaction terms are

fjk (Xj ,Xk ) =
m∑

u=1

m∑
v=1

Bu(Xj)Bv (Xk )βuvlk

▶ This now has many parameters

▶ Wei et al 7 propose a Bayesian variable selection prior for
additive models (priors with mass at τj = 0)

7
Wei, Reich, Hoppin, Ghoshal (2020). Sparse Bayesian additive nonparametric regression with application to

health effects of pesticides mixtures. Statistica Sinica.
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Outline

▶ High-dimensional data
▶ Linear regression
▶ Networks

▶ Nonparametric regression
▶ Generalized additive models
▶ Bayesian additive regression trees
▶ Gaussian process regression
▶ Bayesian deep learning

▶ Prior for a density function
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Bayesian additive regression trees (BART)

▶ GAMs are efficient and interpretable, but struggle with
high-order interactions

▶ In this sense they are not really nonparameteric because
the can only fit a small class of regression functions

▶ Regression trees offer a simple way to handle high-order
interactions

▶ Random forests are a classic way to fit tree models

▶ BART is a Bayesian alternative
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Bayesian additive regression trees (BART)

▶ A tree model can also be written

µ(X) =
m∑

l=1

Bl(X)βl

with βl ∼ Normal(0, τ2)

▶ However, the Bl(X) are now leaves

▶ Example with m = 3:
▶ B1(X) = I(X4 < 0.5)
▶ B2(X) = I(X4 > 0.5)I(X9 < 1.3)
▶ B3(X) = I(X4 > 0.5)I(X9 > 1.3)
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Small tree

X4<0.5
X4>0.5

X9>1.3 X9>1.3

55 / 86



Larger tree

X4<0.5 X4>0.5

X2>1.6 X2>1.6

X6<0.1 X6>0.1

X1>2.3 X1>2.3
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Bayesian additive regression trees (BART)

▶ The variable (X4) and threshold (0.5) in each branch
(X4 < 0.5) are unknown

▶ A Bayesian analysis puts priors on these, as well as the βj

▶ BART averages over multiple trees

µ(X) =
K∑

k=1

µk (X)

where each µk is a tree with its own parameters

▶ This is challenging but implemented in the R package BART
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Outline

▶ High-dimensional data
▶ Linear regression
▶ Networks

▶ Nonparametric regression
▶ Generalized additive models
▶ Bayesian additive regression trees
▶ Gaussian process regression
▶ Bayesian deep learning

▶ Prior for a density function
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Gaussian process (GP) regression

▶ GP regression views µ(X) as a random function over
X ∈ Rp

▶ The process µ is a GP if and only if all finite-dimensional
distributions are MVN

µn = [µ(X1), ..., µ(Xn)]
T ∼ Normal(m,Σ)

▶ A GP is defined by its mean and covariance functions

▶ Typically the mean function is constant E[µ(Xi)] = mi = β0

▶ The covariance function is often

Σij = Cov[µ(Xi), µ(Xj)] = τ2 exp[−(dij/ϕ)
2]

for distance dij = ||Xi − Xj ||
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Gaussian process (GP) regression
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Gaussian process (GP) regression

▶ The unknown parameters are θ = {β, σ2, τ2, ϕ}

▶ The hierarchical model for Y = (Y1, ...,Yn)
T is

Y|µn,θ ∼ Normal(µn, σ
2In) and µn|θ ∼ Normal(m,Σ)

▶ The model for Y marginal over µ, is

Y|θ ∼ Normal[m(θ),Σ(θ) + σ2In]

▶ This is used to obtain the posterior of θ via MCMC

▶ This is slow for large n

61 / 86



Gaussian process (GP) regression

▶ The predictive distribution of µ(Xn+1) given Y is

µ(Xn+1)|Y,θ ∼ Normal
(

mn+1 + P(Y − m), s2
)

▶ The mean operator is P = Cov(µ(Xn+1),Y)Σ−1

▶ The prediction variance is

s2 = Var[µ(Xn+1)]− Cov[µ(Xn+1),Y]Σ−1Cov[Y, µ(Xn+1)]

▶ Both depend on θ, so samples of µ(Xn+1) are drawn from
the PPD using MCMC

▶ PPD samples for Yn+1 add σ2 to s2
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Gaussian process (GP) regression

yearp <- seq(1950,2010,0.1)
np <- length(yearp)
sig2 <- 0.8*var(ACE) # Fixed for illustration
tau2 <- 0.2*var(ACE)
beta <- mean(ACE)
phi <- 5

d <- as.matrix(dist(year))
SigInv <- solve(sig2*diag(n)+

tau2*exp(-(d/phi)^2))
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Gaussian process (GP) regression

m <- v <- rep(0,np)

for(i in 1:np){
dp <- abs(yearp[i] - year)
Sp <- tau2*exp(-(dp/phi)^2)
m[i] <- beta + Sp%*%SigInv%*%(ACE-beta)
v[i] <- tau2 - t(Sp)%*%SigInv%*%Sp

}

plot(year,ACE,xlim=range(yearp))
lines(yearp,m,lwd=2)
lines(yearp,m-2*sqrt(v),lty=2)
lines(yearp,m+2*sqrt(v),lty=2)
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Gaussian process (GP) regression
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Gaussian process (GP) regression

▶ An anisotropic model allows variables to have different
influence

Cov[µ(Xi), µ(Xk )] = exp

−
p∑

j=1

ψj(Xij − Xkj)
2


▶ If ψj = 0 covariate j is removed from the model

▶ A prior with mass at zero performs variable selection
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Gaussian process (GP) regression

▶ In my opinion, GP is the gold standard for prediction for
moderate p

▶ However, it is often very slow for even moderate n

▶ Computing |Σ| and Σ−1 are bottlenecks

▶ Extending GPs to large n is an active area of research

▶ BART and deep learning are faster
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Outline

▶ High-dimensional data
▶ Linear regression
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▶ Nonparametric regression
▶ Generalized additive models
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▶ Gaussian process regression
▶ Bayesian deep learning
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Deep learning

▶ We will discuss only a feed-forward neural network (FFNN)

▶ This assumes unstructured covariates like the other NP
regression methods

▶ Deep learning is most powerful for structured covariates
like images (CNN) or text (RNN)

▶ Deep learning architectures differ for these cases, but the
Bayesian implementation is the same
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Shallow learning
▶ FFNN starts with linear combinations (neurons) of the

covariates (inputs)
▶ For neuron l ∈ {1, ...,L}, let

Zl = bl +

p∑
j=1

WjlXj

▶ This depends on the intercept (bias) bl and slopes
(weights) Wjl

▶ Non-linearity is introduced via the activation function ϕ,
e.g., ϕ(x) = expit(x) or ϕ = x+

▶ In a GLM with link function g, the model is

g[E(Y |X)] = β0 +
L∑

l=1

ϕ(Zl)βl
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Deep learning

Deep learning adds K hidden layers

▶ Input layer: Z (0)
l = b(0)

l +
∑p

j=1 W (0)
jl Xj for l ∈ {1, ...,L0}

▶ Hidden layer 1: Z (1)
l = b(1)

l +
∑L0

j=1 W (1)
jl ϕ1(Z

(0)
l ) for

l ∈ {1, ...,L1}

▶ . . .

▶ Hidden layer K : Z (K )
l = b(K )

l +
∑LK−1

j=1 W (K )
jl ϕK (Z

(K−1)
l ) for

l ∈ {1, ...,LK}

▶ Output layer:
g[E(Y |X)] = b(K+1) +

∑LK
l=1 ϕK+1(Z

(K )
l )W (K+1)

l

This spans C for large L, even with K = 0 hidden layers
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Deep learning

▶ We need to estimate θ = {b(0), ...,b(K+1),W (0), ...,W (K+1)}

▶ A classical analysis selects θ to minimize an objective
function, e.g., SSE or cross entropy

▶ As we’ve seen, this is equivalent to MAP estimation under
a Gaussian or logistic regression model

▶ Classical analysis uses stochastic gradient descent,
Bayesian uses MAP, HMC, SGMCMC or VB

▶ Classical analysis uses dropout to avoid overfitting,
Bayesian uses (sparsity) priors
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Variable selection

▶ SSVS/shrinkage priors can be used for variable selection

▶ If W (0)
jl = 0 for all l then Xj is removed from the model

▶ SSVS prior: W (0)
jl = δjw

(0)
jl for δj ∼ Bernoulli and

w (0)
jl ∼ Normal

▶ Horseshoe prior: W (0)
jl ∼ Normal(0, δ2

j σ
2
0) with

δj ∼ HalfCauchy
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Empirical Bayesian deep learning

▶ A frequentist analysis does not provide prediction
uncertainty

▶ A full Bayesian analysis does, but it slow

▶ An empirical Bayesian analysis is a hybrid

▶ You first analyze the data using stochastic gradient
descent and fix the parameters in the input and (some of)
the hidden layers

▶ With these parameters fixed, you then conduct a shallow
Bayesian analysis using MCMC
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Deep Gaussian process approximation

▶ Another way to obtain prediction uncertainty is a GP
approximation

▶ Consider even the shallow model
▶ Zl = bl +

∑p
j=1 WjlXj

▶ g[E(Y |X)] = η(X) = β0 +
∑L

l=1 ϕ(Zl)βl

▶ If the bl , Wjp and βl have normal priors, then η(X) is
approximately a GP for large L

▶ The covariance function is determined by ϕ and the prior
variances
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Outline

▶ High-dimensional data
▶ Linear regression
▶ Networks

▶ Nonparametric regression
▶ Generalized additive models
▶ Bayesian additive regression trees
▶ Gaussian process regression
▶ Bayesian deep learning

▶ Prior for a density function
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Models for a density/distribution function

▶ We now have several flexible models a mean function

▶ A Bayesian model needs a full likelihood, not just the mean

▶ A nonparametric regression model is

Yi = µ(Xi) + εi

where the error distribution is εi ∼ f for distribution f

▶ A parametric model selects a family for f , say Gaussian

▶ A full NP Bayesian puts a prior on f

▶ Challenging because f (e) ≥ 0 and
∫

f (e)de = 1
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Semiparametric model

▶ A semiparametric model is a finite-mixture of normal

▶ The model is

f (e) =
m∑

j=1

qjϕ(e; γj , σ
2)

where ϕ is the Gaussian PDF

▶ Usually the probabilities have prior
q = (q1, ...,qm) ∼ Dirichlet(α1, ..., αm)

▶ The means γj can be fixed on a grid, or given prior
γj ∼ Normal(0, τ2)

▶ Increasing m can approximate any continuous PDF
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Semiparametric model

▶ An alternative is a random histogram

▶ The model is

f (e) =
m∑

j=1

qjU(e;bj ,bj+1)

where U is the uniform PDF with fixed break points bj

▶ The probabilities have prior
(q1, ...,qm) ∼ Dirichlet(α1, ..., αm)
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Semiparametric model

▶ The hyperparameters αj determine the prior

▶ Let αj = cf0j for c > 0 and
∑m

j=1 f0j = 1

▶ Then prior mean is E(qj) = f0j

▶ The prior variance is V(qj) = f0j(1 − f0j)/(c + 1)

▶ Select f0j can be based on a parametric model

▶ If the base distribution is standard normal then

f0j =

∫ bj+1

bj

ϕ(x)dx

▶ The concentration parameter c control prior strength
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Dirichlet process prior (DPP)

▶ The DPP is a prior on a distribution function F (e)

▶ The base distribution is usually a parametric model, and
can even have unknown parameters

▶ All draws from the prior are valid CDFs

▶ The prior support is F ∈ C where C is the collection all valid
CDFs

▶ The DP has two hyperparameters: the base distribution
F0(e) (a CDF) and concentration parameter c > 0
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Dirichlet process prior (DPP)

▶ Like a GP, a DPP is defined by its finite-dimensional
distributions

▶ Let −∞ = b1 < ... < bm+1 = ∞ be an arbitrary set of
breakpoints

▶ Define the probability in the intervals for the DPP as

Pj = F (bj+1)− F (bj)

▶ F follows a DPP if and only if

(P1, ...,Pm) ∼ Dirichlet(cf01, ..., cf0m)

for f0j = F0(bj+1)− F0(bj)
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Dirichlet process prior (DPP)

▶ One way to draw approximate realizations is the
stick-breaking representation

▶ The PMF corresponding to F (e) can be written

f (e) =
∞∑

j=1

pj I(e = γj)

▶ The locations have prior γj ∼ f0

▶ The probabilities are p1 = v1 and for j > 1

pj = vj

j−1∏
k=1

(1 − vk ) = vj

1 −
j−1∑
k=1

pk


and vj ∼ Beta(1, c)
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Dirichlet process prior (DPP)

Derivation
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Dirichlet process prior (DPP)

▶ For plotting and analysis, the infinite mixture can be
truncated by setting vm = 1 giving

f (e) =
m∑

j=1

pj I(e = γj)

▶ The number of terms m set so that E(pm) is small

▶ Another issue is that the DPP produces a discrete PMF

▶ A DP mixture of normals is continuous

f (e) =
m∑

j=1

pjϕ(e; γj , σ
2)

where pj and γi have priors as in the DPP
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Other priors

▶ DPP can be generalized with different priors for the vj , e.g.,
the Pitman-Yor process

▶ Finite mixtures model can be extended by having the
number of terms, m, follow a Poisson prior

▶ The Polya tree prior is a tree-based prior for a PDF

▶ Density regression allows the mixture locations and/or
probabilities to depend on covariates,

f (e; x) =
∑

j

pj(x)ϕ
(

e;λj(x), σ2
)
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