Part 8

Machine learning

ST740

North Carolina State University

What is machine learning?

Bayesian nonparametrics (BNP)

- A parametric analysis assumes a fairly simple data-generating model and learning takes place by estimating the parameters
- ► The model could be purely statistical, e.g., regression
- The model can also by physical, e.g., an epidemiological (SIR) model
- Advantage: parameters are usually interpretable
- Disadvantage: Inference is invalid and predictions are poor if the model is way off

Bayesian nonparametrics

A nonparametric analysis attempts to avoid assumptions

For example, if you want to test if two means are equal, do a rank test instead of assuming normality

- Bayesian methods require a likelihood, so some model must be specified
- BNP specifies models that are very flexible, often with infinitely-many parameters

Bayesian nonparametrics

Consider the polynomial regression model

$$m{Y}_i | m{ heta} \sim \mathsf{Normal}\left(eta_0 + \sum_{j=1}^J X_i^j eta_j, \sigma^2
ight)$$

• Parametric: J = 1 or 2 and you need to verify this fits

- Semiparametric: J = 15 probably fits almost any function, but you need to tune J
- Nonparametric: J = ∞ is the most flexible but requires tricky tricks to implement

Bayesian nonparametrics

 BNP typically replaces priors on parameters with priors on functions

• Example 1: $E(Y|X) = \mu(X)$ is a function from $\mathcal{R}^{p} \to \mathcal{R}^{1}$

Gaussian process regression estimates this function assuming only that it is continuous in X

Example 2: say the errors $\varepsilon_i \sim f$ for some PDF f

 A Dirichlet process mixture of normals prior allows f to be any continuous PDF

Outline

High-dimensional data

- Linear regression
- Networks

- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

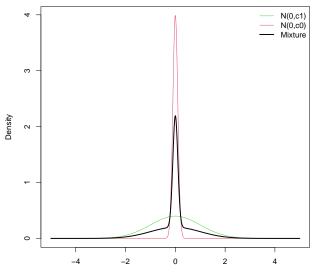
High-dimensional linear regression

- ► Consider the linear regression model with $Y_i | \beta \sim \text{Normal} \left(\beta_0 + \sum_{j=1}^p X_{ij} \beta_j, \sigma^2 \right)$ for i = 1, ..., n
- A classical analysis has p << n and the covariates are chosen based on prior scientific knowledge
- A high-dimensional analysis has p large relative to n
- Example, Y_i is the a person's health response and p = 100,000 genetic markers
- In this p >> n setting we need new machine learning methods¹

¹ Handbook of Bayesian Variable Selection (2021) by Tadesse and Vannucci provide a recent review

Sparsity priors

- This analysis is impossible without some strong assumptions
- A common assumption is **sparsity**, i.e., most of the β_j are zero
- This assumption is encoded in the prior for the β_i
- A sparsity prior should have mass at or near zero and heavy tails
- This simultaneously shrinks irrelevant variables to zero and reduces bias in the important variables



beta

The most natural prior is a mixture prior,

 $\pi(\beta) = \boldsymbol{q}\phi(\beta;\boldsymbol{0},\boldsymbol{c}_1) + (1-\boldsymbol{q})\phi(\beta;\boldsymbol{0},\boldsymbol{c}_0)$

where $\phi(x; m, s)$ is the Normal (m, s^2) PDF

The prior probability of inclusion is q

- The prior SD given a variable is included is c₁
- The prior SD given a variable is excluded is c₀ << c₁
- Can set $c_0 = 0$ giving a discrete prior

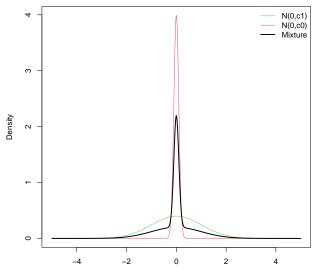
c1 <- 1 c0 <- 0.1 q <- 0.5

beta <- seq(-5,5,.001)

plot (beta, dnorm (beta, 0, c0), col=2, type="1",
 ylab="Density")

lines(beta, dnorm(beta, 0, c1), col=3)

mix <- q*dnorm(beta,0,c1)+(1-q)*dnorm(beta,0,c0)
lines(beta,mix,lwd=2)</pre>



beta

- Gibbs sampling can be used
- Let $\gamma_i = 1$ if variable *j* is included and $\gamma_i = 0$ otherwise
- The model is

$$eta_j | \gamma_j \sim \mathsf{Normal}\left(\mathbf{0}, oldsymbol{c}_{\gamma_j}
ight)$$

where $\gamma_i \sim \text{Bernoulli}(q)$

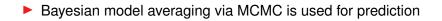
- The full conditional distributions of β_j, γ_j, c₀, c₁ and q are all conjugate
- However, because of the discrete prior on γ_j , convergence can be slow

The posterior is summarized by the 95% interval for the β_j and inclusion probabilities, Prob(γ_j = 1|Y)

You can also compute the most likely model,

$$\gamma = (\gamma_1, ..., \gamma_p)$$

however estimating model probabilities is hard with large p



Continuous shrinkage models

- The discrete form of the spike and slab priors slows convergence
- Continuous mixture priors have been proposed as alternatives
- Global-local skrinkage: $\beta | \sigma, \gamma_0, \gamma_j \sim \text{Normal} (0, (\sigma \gamma_0 \gamma_j)^2)$
- Global shrinkage is controlled by γ_0
- Local shrinkage is controlled by \(\gamma_j \sim g\) for some mixing distribution \(g\)

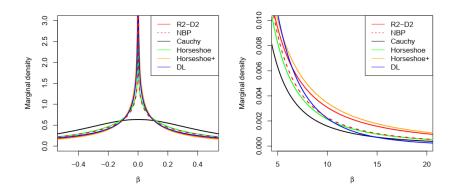
Horseshoe prior

- The horseshoe prior takes g as $\gamma_i \sim$ HalfCauchy
- If **X** is the identify matrix and $\gamma_0 = 1$, then

$$\mathsf{E}(\beta_j|\mathbf{Y}) = [\mathsf{1} - \mathsf{E}(\kappa_j|Y_j)]Y_j$$

- The shrinkage parameter $\kappa_j = \frac{1}{1+\gamma_i} \sim \text{Beta}(1/2, 1/2)$
- The Beta(1/2,1/2) distribution is shaped like a horseshoe with peaks at 0 and 1
- The induced distribution for β_j (over γ_j) has mass near zero and heavy tails
- Other shrinkage priors have been proposed

Other continuous shrinkage priors



Taken from Zhang et al,

https://arxiv.org/pdf/1609.00046.pdf

The R2D2 prior

- In our recent work, we proposed the R2-induced Dirichlet Decomposition (R2-D2) prior,²
- The prior places a Beta(a, b) prior on Bayesian R^2
- The proportion of variance allocated to each β_j follows a Dirichlet(c,..., c) prior
- Small a promotes skrinkage and small c promotes sparsity
- We (well, Zhang) proved posterior consistency for p increasing faster than n

²Zhang, Naughton, Bondell, Reich (2022). Bayesian Regression Using a Prior on the Model Fit: The R2-D2 Shrinkage Prior. *JASA*

Outline

High-dimensional data

- Linear regression
- Networks

- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Gaussian graphical models

- Let $\mathbf{Y}_i = (Y_{i1}, ..., Y_{ip})^T$ be the response for observation $i \in \{1, ..., n\}$
- Rather than a response and predictor, we are interested in learning about the relationships between the *p* variables
- For example, maybe the p variables are genes and we want to uncover a regulatory network
- This might looks like $Y_{i1} \rightarrow Y_{i6} \rightarrow Y_{i3}$
- Other examples: Neuron firing, social-media influencers, congress, etc

Gaussian graphical models

A Gaussian model is Y ~ Normal(0,Σ) for p × p covariance matrix Σ

• The precision matrix $\Omega = \Sigma^{-1}$ has (i, j) element ω_{ij}

Y_i and Y_j are correlated conditionally on Y_k for all k ∉ {i, j} if and only if ω_{ij} ≠ 0

So we could put a sparsity prior on the ω_{ij}

Gaussian graphical models

- Constructing a prior for ω_{ij} is tricky because Ω must be symmetric and positive definite
- ▶ Wang³ shows that the prior below is valid

The diagonal elements are

 $\omega_{\it ii} \sim {\rm Exponential}$

The off-diagonal elements are

 $\omega_{ij} = \omega_{ji} \sim Mixture of Normals$

³Wang H (2015). Scaling it up: stochastic search structure learning in graphical models. *Bayesian Analysis*

Outline

High-dimensional data

- Linear regression
- Networks

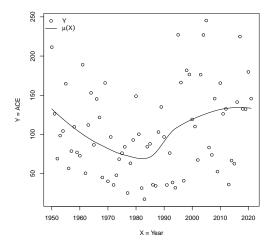
- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

• Let
$$Y_i = \mu(\mathbf{X}_i) + \varepsilon_i$$
 so that

$$\mathsf{E}(\mathbf{Y}_i|\mathbf{X}_i) = \mu(\mathbf{X}_i)$$

- A linear model takes the regression function μ to be linear, $\mu(\mathbf{X}_i) = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j$
- In the parametric analysis this goal is to estimate the intepretable parameters β_j
- Nonparametric regression attempts to estimate the regression function μ without strong assumptions
- The goal is to estimate a function μ rather than scalars β_i

```
dat <- read.csv(url("https://www4.stat.ncsu.edu/</pre>
        ~bjreich/ST740/hurricanes.csv"))
year <- dat[,1]</pre>
ACE <- dat[year>1949,8]
vear <- vear[vear>1949]
lo <- loess(ACE~year)</pre>
plot(lo,xlab="X = Year",ylab="Y = ACE")
lines(lo$x, lo$fitted)
legend("topleft", c("Y", expression(mu(X))),
       pch=c(1, NA), lty=c(NA, 1), bty="n")
```



Accumulated Cyclone Energy (ACE) in the North Atlantic ⁴

⁴http://tropical.atmos.colostate.edu/Realtime/index. php?arch&loc=northatlantic

- We will specify priors on the function $\mu(\mathbf{X})$
- For example, say p = 1 and we use polynomial regression,

$$f(X) = \beta_0 + \sum_{j=1}^m X^j \beta_j$$

- ▶ This depends on *m* and parameters $\beta_m = (\beta_0, ..., \beta_m)$
- The flexibility of the model is determined by its span
- For polynomial regression the span is the class of infinitely-differential functions, C
- Say the true regression function is μ₀ ∈ C, then there exists m and β_m so that μ(X) ≈ μ₀(X) for all X
- All models we will discuss span this (or similar) space ⁵

⁵In deep learning this is called the "universal approximation theorem"

- Bayesian NP regression uses many of the same models/ideas as classical NP regression
- The advantage of Bayesian methods are incorporation of prior information and uncertainty quantification
- Classical approaches often resort to plug-in estimators (e.g., the correlation parameters of a Gaussian process)
- In deep learning, Bayesian methods are the primary method for prediction intervals

Spline basis expansion

• A spline approximation (here p = 1) is

$$\mu(X) \approx \beta_0 + \sum_{j=1}^m B_j(X)\beta_j$$

where $B_j(X)$ are fixed spline basis function and β_j are parameters to be estimated

- This expansion constructs *m* functions B_j to explain the effect of one variable, X
- ▶ There are many possibilities for *B_i*; we will use b-splines
- These are sparse piece-wise quadratic (by default) functions

Bias-variance trade-off

• The β_i can be estimated by linear regression

 Large *m* can approximate any continuously differentiable function, but risks over-fitting

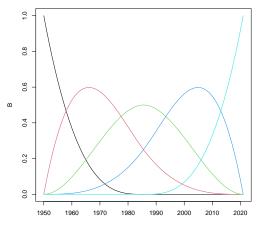
Small *m* is more stable, but risks bias of the true μ is outside the span of the B_i

Selecting *m* is critical

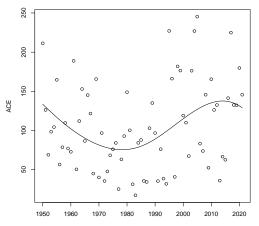
```
library(splines)
m <- 5
B <- bs(year,df=m,intercept=TRUE)
dim(B)
[1] 75 5</pre>
```

```
fit <- lm(ACE~B-1)</pre>
```

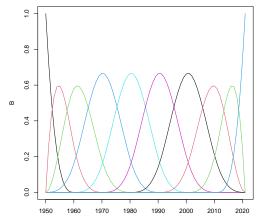
```
plot(year,ACE,main=
    paste("m =",m,"basis functions"))
lines(year,B%*%fit$coef)
```



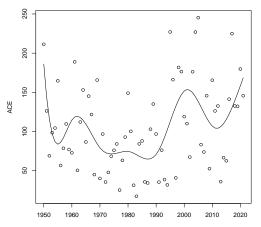
m = 5 basis functions



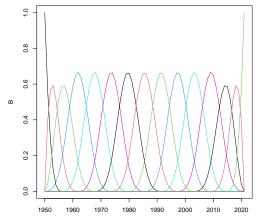
m = 5 basis functions



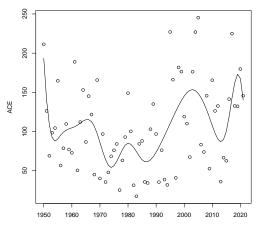
m = 10 basis functions



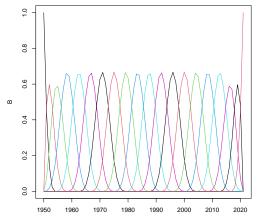
m = 10 basis functions



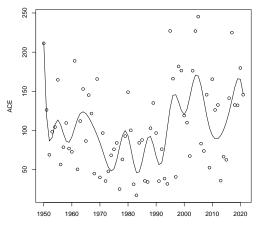
m = 15 basis functions



m = 15 basis functions



m = 20 basis functions

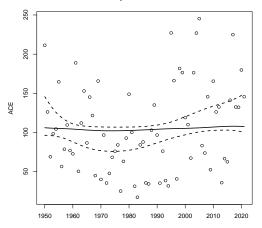


m = 20 basis functions

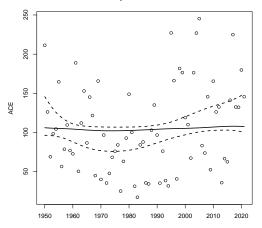
Bias-variance trade-off

- ► The typical Bayesian approach⁶ is to select *m* large enough to avoid bias, say m = n
- We then use priors to regulate the β_i and avoid overfitting
- The results on the next slides take β_j|τ ~ Normal(0, τ²) with τ ~ InvG
- More sophisticated priors can be used, e.g., sparsity priors or priors with correlation across j

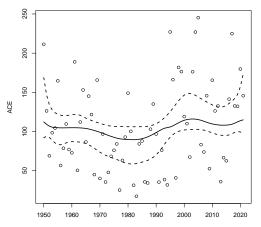
⁶Frequentists do similar things, often called "smoothing splines"



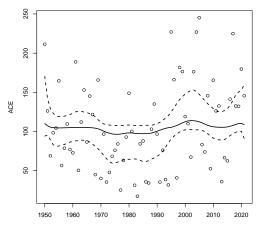
Bayes fit with m = 5



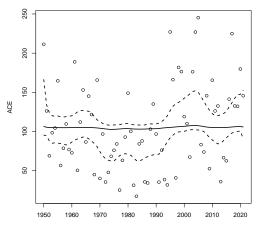
Bayes fit with m = 5



Bayes fit with m = 10



Bayes fit with m = 15



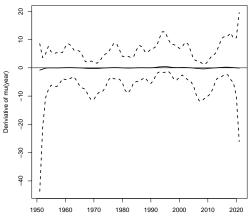
Bayes fit with m = 20

- ► If it is known that µ(X) is increasing in X, this can be incorporated in the prior
- For the b-splines, if $\beta_1 < ... < \beta_m$ then $\mu(X)$ is increasing

You can also study the derivative

$$\frac{d\mu(X)}{dX} = \sum_{j=1}^{m} \frac{dB_j(X)}{dX} \beta_j$$

- lt turns out that $dB_i(X)/dX$ is also a b-spline
- The next slide shows this function for the ACE data



Year

Generalized additive models (GAMs)

 Extending spline regression for large p suffers from the curse of dimensionality

If we desire a model for µ that can approximate any function on X ∈ R^p, we need m^p terms

$$\mu(\mathbf{X}) = \beta_0 + \sum_{j_1=1}^m \dots \sum_{j_p=1}^m B_j(X_1) \cdot \dots \cdot B_p(X_p) \beta_{j_1,\dots,j_p}$$

This has too many parameters for even moderate p

Generalized additive models (GAMs)

GAMs reduce the dimension by assuming an additivity

The main effects model is

$$\mu(\mathbf{X}) = \beta_0 + \sum_{j=1}^{p} f_j(X_j)$$

Each of the p function has m terms,

$$f_j(X_j) = \sum_{l=1}^m B_{jl}(X_j)\beta_{jl}$$

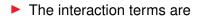
• Prior might be $\beta_{jl} \sim \text{Normal}(0, \tau_j^2)$ with $\tau_j \sim \text{InvG}$

▶ This model has *pm* << *m*^{*p*} terms and is interpretable

Generalized additive models (GAMs)

A second-order model is

$$\mu(\mathbf{X}) = \beta_0 + \sum_{j=1}^{p} f_j(X_j) + \sum_{j < k}^{p} f_{jk}(X_j, X_k)$$



$$f_{jk}(X_j, X_k) = \sum_{u=1}^m \sum_{v=1}^m B_u(X_j) B_v(X_k) \beta_{uvlk}$$

- This now has many parameters
- Wei et al ⁷ propose a Bayesian variable selection prior for additive models (priors with mass at τ_i = 0)

⁷ Wei, Reich, Hoppin, Ghoshal (2020). Sparse Bayesian additive nonparametric regression with application to health effects of pesticides mixtures. *Statistica Sinica*.

Outline

High-dimensional data

- Linear regression
- Networks

Nonparametric regression

- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Bayesian additive regression trees (BART)

- GAMs are efficient and interpretable, but struggle with high-order interactions
- In this sense they are not really nonparameteric because the can only fit a small class of regression functions
- Regression trees offer a simple way to handle high-order interactions
- Random forests are a classic way to fit tree models
- BART is a Bayesian alternative

Bayesian additive regression trees (BART)

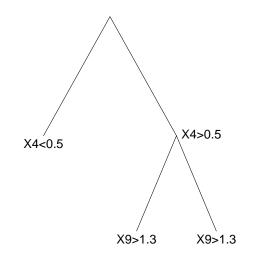
A tree model can also be written

$$\mu(\mathbf{X}) = \sum_{l=1}^{m} B_l(\mathbf{X}) \beta_l$$

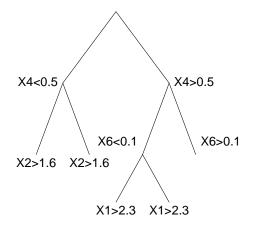
with $\beta_l \sim \text{Normal}(0, \tau^2)$

• However, the $B_l(\mathbf{X})$ are now leaves

Small tree



Larger tree



Bayesian additive regression trees (BART)

- The variable (X₄) and threshold (0.5) in each branch (X₄ < 0.5) are unknown</p>
- A Bayesian analysis puts priors on these, as well as the β_i
- BART averages over multiple trees

$$\mu(\mathbf{X}) = \sum_{k=1}^{K} \mu_k(\mathbf{X})$$

where each μ_k is a tree with its own parameters

This is challenging but implemented in the R package BART

Outline

High-dimensional data

- Linear regression
- Networks

Nonparametric regression

- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

- GP regression views $\mu(\mathbf{X})$ as a random function over $\mathbf{X} \in \mathcal{R}^{p}$
- The process µ is a GP if and only if all finite-dimensional distributions are MVN

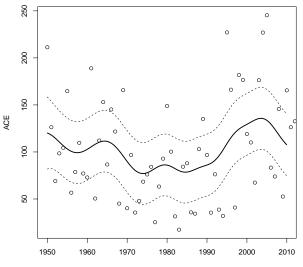
$$\mu_n = [\mu(\mathbf{X}_1), ..., \mu(\mathbf{X}_n)]^T \sim \text{Normal}(\mathbf{m}, \Sigma)$$

A GP is defined by its mean and covariance functions

- ▶ Typically the mean function is constant $E[\mu(\mathbf{X}_i)] = m_i = \beta_0$
- The covariance function is often

$$\Sigma_{ij} = \operatorname{Cov}[\mu(\mathbf{X}_i), \mu(\mathbf{X}_j)] = \tau^2 \exp[-(d_{ij}/\phi)^2]$$

for distance $d_{ij} = ||\mathbf{X}_i - \mathbf{X}_j||$



• The unknown parameters are $\theta = \{\beta, \sigma^2, \tau^2, \phi\}$

• The hierarchical model for $\mathbf{Y} = (Y_1, ..., Y_n)^T$ is

 $\mathbf{Y}|\boldsymbol{\mu}_n, \boldsymbol{\theta} \sim \operatorname{Normal}(\boldsymbol{\mu}_n, \sigma^2 \mathbf{I}_n) \text{ and } \boldsymbol{\mu}_n | \boldsymbol{\theta} \sim \operatorname{Normal}(\mathbf{m}, \Sigma)$

• The model for **Y** marginal over μ , is

 $\mathbf{Y}|\boldsymbol{\theta} \sim \text{Normal}[\mathbf{m}(\boldsymbol{\theta}), \boldsymbol{\Sigma}(\boldsymbol{\theta}) + \sigma^2 \mathbf{I}_n]$

This is used to obtain the posterior of θ via MCMC

• The predictive distribution of $\mu(X_{n+1})$ given **Y** is

$$\mu(X_{n+1})|\mathbf{Y}, \boldsymbol{\theta} \sim \operatorname{Normal}\left(m_{n+1} + P(\mathbf{Y} - \mathbf{m}), s^2\right)$$

- The mean operator is $P = \text{Cov}(\mu(X_{n+1}), \mathbf{Y})\Sigma^{-1}$
- The prediction variance is

$$s^2 = \operatorname{Var}[\mu(X_{n+1})] - \operatorname{Cov}[\mu(X_{n+1}), \mathbf{Y}]\Sigma^{-1}\operatorname{Cov}[\mathbf{Y}, \mu(X_{n+1})]$$

Both depend on θ, so samples of μ(X_{n+1}) are drawn from the PPD using MCMC

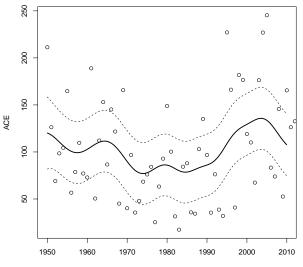
• PPD samples for
$$Y_{n+1}$$
 add σ^2 to s^2

```
yearp <- seq(1950,2010,0.1)
np <- length(yearp)
sig2 <- 0.8*var(ACE) # Fixed for illustration
tau2 <- 0.2*var(ACE)
beta <- mean(ACE)
phi <- 5
d <- as.matrix(dist(year))
SigInv <- solve(sig2*diag(n)+</pre>
```

```
tau2 \cdot exp(-(d/phi)^2))
```

```
m <- v <- rep(0,np)
for(i in 1:np){
    dp <- abs(yearp[i] - year)
    Sp <- tau2*exp(-(dp/phi)^2)
    m[i] <- beta + Sp%*%SigInv%*%(ACE-beta)
    v[i] <- tau2 - t(Sp)%*%SigInv%*%Sp
}</pre>
```

```
plot (year, ACE, xlim=range (yearp))
lines (yearp, m, lwd=2)
lines (yearp, m-2*sqrt(v), lty=2)
lines (yearp, m+2*sqrt(v), lty=2)
```



An anisotropic model allows variables to have different influence

$$\operatorname{Cov}[\mu(\mathbf{X}_i), \mu(\mathbf{X}_k)] = \exp\left(-\sum_{j=1}^p \psi_j (X_{ij} - X_{kj})^2\right)$$

• If $\psi_i = 0$ covariate *j* is removed from the model

A prior with mass at zero performs variable selection

- In my opinion, GP is the gold standard for prediction for moderate p
- However, it is often very slow for even moderate n
- Computing $|\Sigma|$ and Σ^{-1} are bottlenecks
- Extending GPs to large *n* is an active area of research
- BART and deep learning are faster

Outline

High-dimensional data

- Linear regression
- Networks

Nonparametric regression

- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning
- Prior for a density function

Deep learning

We will discuss only a feed-forward neural network (FFNN)

 This assumes unstructured covariates like the other NP regression methods

- Deep learning is most powerful for structured covariates like images (CNN) or text (RNN)
- Deep learning architectures differ for these cases, but the Bayesian implementation is the same

Shallow learning

- FFNN starts with linear combinations (neurons) of the covariates (inputs)
- For neuron $I \in \{1, ..., L\}$, let

$$Z_l = b_l + \sum_{j=1}^{p} W_{jl} X_j$$

- This depends on the intercept (bias) b_l and slopes (weights) W_{jl}
- Non-linearity is introduced via the activation function φ, e.g., φ(x) = expit(x) or φ = x₊
- In a GLM with link function g, the model is

$$g[\mathsf{E}(Y|\mathbf{X})] = \beta_0 + \sum_{l=1}^{L} \phi(Z_l) \beta_l$$

Deep learning

Deep learning adds K hidden layers

• Input layer:
$$Z_l^{(0)} = b_l^{(0)} + \sum_{j=1}^{p} W_{jl}^{(0)} X_j$$
 for $l \in \{1, ..., L_0\}$

• Hidden layer 1:
$$Z_l^{(1)} = b_l^{(1)} + \sum_{j=1}^{L_0} W_{jl}^{(1)} \phi_1(Z_l^{(0)})$$
 for $l \in \{1, ..., L_1\}$

▶ ...

• Hidden layer
$$K: Z_l^{(K)} = b_l^{(K)} + \sum_{j=1}^{L_{K-1}} W_{jl}^{(K)} \phi_K(Z_l^{(K-1)})$$
 for $l \in \{1, ..., L_K\}$

• Output layer: $g[E(Y|\mathbf{X})] = b^{(K+1)} + \sum_{l=1}^{L_K} \phi_{K+1}(Z_l^{(K)}) W_l^{(K+1)}$

This spans C for large L, even with K = 0 hidden layers

Deep learning

• We need to estimate $\theta = \{b^{(0)}, ..., b^{(K+1)}, W^{(0)}, ..., W^{(K+1)}\}$

- A classical analysis selects θ to minimize an objective function, e.g., SSE or cross entropy
- As we've seen, this is equivalent to MAP estimation under a Gaussian or logistic regression model
- Classical analysis uses stochastic gradient descent, Bayesian uses MAP, HMC, SGMCMC or VB
- Classical analysis uses dropout to avoid overfitting, Bayesian uses (sparsity) priors

Variable selection

SSVS/shrinkage priors can be used for variable selection

► If
$$W_{ji}^{(0)} = 0$$
 for all *I* then X_j is removed from the model

SSVS prior:
$$W_{jl}^{(0)} = \delta_j w_{jl}^{(0)}$$
 for $\delta_j \sim$ Bernoulli and $w_{jl}^{(0)} \sim$ Normal

• Horseshoe prior: $W_{jl}^{(0)} \sim \text{Normal}(0, \delta_j^2 \sigma_0^2)$ with $\delta_j \sim \text{HalfCauchy}$

Empirical Bayesian deep learning

- A frequentist analysis does not provide prediction uncertainty
- A full Bayesian analysis does, but it slow
- An empirical Bayesian analysis is a hybrid
- You first analyze the data using stochastic gradient descent and fix the parameters in the input and (some of) the hidden layers
- With these parameters fixed, you then conduct a shallow Bayesian analysis using MCMC

Deep Gaussian process approximation

- Another way to obtain prediction uncertainty is a GP approximation
- Consider even the shallow model

$$Z_l = b_l + \sum_{j=1}^p W_{jl} X_j$$

•
$$g[\mathsf{E}(Y|\mathbf{X})] = \eta(\mathbf{X}) = \beta_0 + \sum_{l=1}^{L} \phi(Z_l)\beta_l$$

- If the b_l, W_{jp} and β_l have normal priors, then η(X) is approximately a GP for large L
- The covariance function is determined by \u03c6 and the prior variances

Outline

High-dimensional data

- Linear regression
- Networks

Nonparametric regression

- Generalized additive models
- Bayesian additive regression trees
- Gaussian process regression
- Bayesian deep learning

Prior for a density function

Models for a density/distribution function

- ▶ We now have several flexible models a mean function
- A Bayesian model needs a full likelihood, not just the mean
- A nonparametric regression model is

$$Y_i = \mu(\mathbf{X}_i) + \varepsilon_i$$

where the error distribution is $\varepsilon_i \sim f$ for distribution *f*

A parametric model selects a family for f, say Gaussian

• Challenging because $f(e) \ge 0$ and $\int f(e)de = 1$

Semiparametric model

- A semiparametric model is a finite-mixture of normal
- The model is

$$f(\boldsymbol{e}) = \sum_{j=1}^{m} q_j \phi(\boldsymbol{e}; \gamma_j, \sigma^2)$$

where ϕ is the Gaussian PDF

- ► Usually the probabilities have prior $q = (q_1, ..., q_m) \sim \text{Dirichlet}(\alpha_1, ..., \alpha_m)$
- The means γ_j can be fixed on a grid, or given prior γ_j ~ Normal(0, τ²)

Increasing m can approximate any continuous PDF

Semiparametric model

An alternative is a random histogram

The model is

$$f(e) = \sum_{j=1}^m q_j U(e; b_j, b_{j+1})$$

where U is the uniform PDF with fixed break points b_i

► The probabilities have prior (q₁,...,q_m) ~ Dirichlet(α₁,...,α_m)

Semiparametric model

• The hyperparameters α_i determine the prior

• Let
$$\alpha_j = cf_{0j}$$
 for $c > 0$ and $\sum_{j=1}^m f_{0j} = 1$

- Then prior mean is $E(q_j) = f_{0j}$
- The prior variance is $V(q_j) = f_{0j}(1 f_{0j})/(c + 1)$
- Select f_{0i} can be based on a parametric model
- If the base distribution is standard normal then

$$f_{0j} = \int_{b_j}^{b_{j+1}} \phi(x) dx$$

The concentration parameter c control prior strength

- The DPP is a prior on a distribution function F(e)
- The base distribution is usually a parametric model, and can even have unknown parameters
- All draws from the prior are valid CDFs
- ► The prior support is *F* ∈ C where C is the collection all valid CDFs
- ► The DP has two hyperparameters: the base distribution $F_0(e)$ (a CDF) and concentration parameter c > 0

- Like a GP, a DPP is defined by its finite-dimensional distributions
- Let −∞ = b₁ < ... < b_{m+1} = ∞ be an arbitrary set of breakpoints
- Define the probability in the intervals for the DPP as

$$P_j = F(b_{j+1}) - F(b_j)$$

F follows a DPP if and only if

 $(P_1,...,P_m)\sim {\sf Dirichlet}({\it cf}_{01},...,{\it cf}_{0m})$ for ${\it f}_{0j}={\it F}_0(b_{j+1})-{\it F}_0(b_j)$

- One way to draw approximate realizations is the stick-breaking representation
- The PMF corresponding to F(e) can be written

$$f(e) = \sum_{j=1}^{\infty} p_j I(e = \gamma_j)$$

- The locations have prior $\gamma_j \sim f_0$
- The probabilities are $p_1 = v_1$ and for j > 1

$$p_j = v_j \prod_{k=1}^{j-1} (1 - v_k) = v_j \left(1 - \sum_{k=1}^{j-1} p_k \right)$$

and $v_j \sim \text{Beta}(1, c)$

Derivation

For plotting and analysis, the infinite mixture can be truncated by setting $v_m = 1$ giving

$$f(e) = \sum_{j=1}^{m} p_j I(e = \gamma_j)$$

- The number of terms *m* set so that $E(p_m)$ is small
- Another issue is that the DPP produces a discrete PMF
- A DP mixture of normals is continuous

$$f(e) = \sum_{j=1}^{m} p_j \phi(e; \gamma_j, \sigma^2)$$

where p_i and γ_i have priors as in the DPP

Other priors

- DPP can be generalized with different priors for the v_j, e.g., the Pitman-Yor process
- Finite mixtures model can be extended by having the number of terms, *m*, follow a Poisson prior
- The Polya tree prior is a tree-based prior for a PDF
- Density regression allows the mixture locations and/or probabilities to depend on covariates,

$$f(\boldsymbol{e}; \boldsymbol{x}) = \sum_{j} p_{j}(\boldsymbol{x}) \phi\left(\boldsymbol{e}; \lambda_{j}(\boldsymbol{x}), \sigma^{2}\right)$$