
Part 4

Bayesian computing

ST740

North Carolina State University

1 / 76

Bayesian computing

▶ Given the prior and data, the posterior is fixed and a
Bayesian analysis boils down to summarizing the posterior

▶ We need point estimates, credible sets, etc

▶ Summarizing a p-dimensional posterior distribution is
challenging for large p

▶ In the 80’s, Bayesian computing was unable to do this for
more than a few parameters

▶ In the 90’s, new algorithms were developed that
revolutionized Bayesian statistics

▶ Understanding these algorithms is obviously important

2 / 76

Outline

▶ Deterministic methods
▶ MAP estimation
▶ Numerical integration
▶ Bayesian CLT
▶ INLA

▶ Markov Chain Monte Carlo
▶ Gibbs sampling
▶ Slice sampling
▶ Metropolis-Hastings sampling
▶ Hamiltonian Monte Carlo
▶ JAGS
▶ Convergence diagnostics

▶ ABC

3 / 76

MAP estimation

▶ Sometimes you don’t need an entire posterior distribution
and a single point estimate will do

▶ Example: prediction in machine learning

▶ The Maximum a Posteriori (MAP) estimate is the posterior
mode

θ̂MAP = argmax
θ

p(θ|Y) = argmax
θ

log[f (Y|θ)] + log[π(θ)]

▶ This is similar to the maximum likelihood estimation but
includes the prior (penalty)

4 / 76

Univariate example

Say Y |θ ∼ Binomial(n, θ) and θ ∼ Beta(0.5,0.5), find θ̂MAP

▶ The likelihood is f (Y |θ) ∝ θY (1 − θ)n−Y

▶ The log likelihood is1

log[f (Y |θ)] = Y log(θ) + (n − Y) log(1 − θ)

▶ The prior is π(θ) ∝ θ0.5−1(θ)0.5−1

▶ The log prior1 is log[π(θ)] = −0.5 log(θ)− 0.5 log(1 − θ)

▶ Therefore, the MAP estimator is

θ̂ = arg max
θ

(Y − 0.5) log(θ) + (n − Y − 0.5) log(1 − θ)

1ignoring constants that don’t depend on θ
5 / 76

Univariate example

Say Y |θ ∼ Binomial(n, θ) and θ ∼ Beta(0.5,0.5), find θ̂MAP

▶ The MAP estimator is

θ̂ = arg max
θ

(Y − 0.5) log(θ) + (n − Y − 0.5) log(1 − θ)

▶ Taking the derivative and setting to zero gives

Y − 0.5
θ

− n − Y − 0.5
1 − θ

= 0

▶ The solution (assuming Y ,n − Y ≥ 1) is

θ̂ =
Y − 0.5
n − 1

6 / 76

Bayesian central limit theorem

▶ Another simplification is to approximate the posterior as
Gaussian

▶ Berstein-Von Mises Theorem: As the sample size grows
the posterior doesn’t depend on the prior

▶ Frequentist result: As the sample size grows the likelihood
function is approximately normal

▶ Bayesian CLT: For large n and some other conditions
θ|Y ≈ Normal

7 / 76

Bayesian central limit theorem

▶ Bayesian CLT: For large n and some other conditions

θ ∼ Normal[θ̂MAP , I(θ̂MAP)
−1]

▶ I is Fisher’s information matrix

▶ The (j , k) element of I is

− ∂2

∂θj∂θk
log[p(θ|Y)]

evaluated at θ̂MAP

▶ We have marginal and conditional means, standard
deviations and intervals for the normal distribution

8 / 76

Univariate example

Say Y |θ ∼ Binomial(n, θ) and θ ∼ Beta(0.5,0.5), find the
Gaussian approximation for p(θ|Y)
▶ We have seen that (assuming Y ,n − Y ≥ 1),

θ̂MAP =
Y − 0.5
n − 1

▶ We have also seen (Jeffreys lecture) that

I(θ) = nθ−1(1 − θ)−1

▶ Therefore,

θ|Y ≈ Normal
[
θ̂MAP , I(θ̂MAP)

−1
]

≈ Normal
[
θ̂MAP , θ̂MAP(1 − θ̂MAP)/n

]

9 / 76

Illustration of the Bayesian CLT

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Y=3, n=10

θ

P
os

te
rio

r
Exact
CLT
MAP

10 / 76

Illustration of the Bayesian CLT

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Y=9, n=30

θ

P
os

te
rio

r
Exact
CLT
MAP

11 / 76

Illustration of the Bayesian CLT

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Y=30, n=100

θ

P
os

te
rio

r
Exact
CLT
MAP

12 / 76

Bayesian central limit theorem

▶ For large datasets with a small number of parameters
evoking the Bayes CLT is probably the best approach

▶ The approximate posterior can be computing using
standard software (e.g., glm in R)

▶ The numerical values (e.g., intervals) will equal the
frequentist values, but the interpretation remains Bayesian

▶ Why not just do a frequentist analysis? Well, why not just
do a Bayesian analysis?

13 / 76

Numerical integration

▶ Many posterior summaries of interest are integrals over the
posterior

▶ Ex: E(θj |Y) =
∫
θjp(θ)dθ

▶ Ex: V(θj |Y) =
∫
[θj − E(θ|Y)]2p(θ)dθ

▶ These are p dimensional integrals that we usually can’t
solve analytically

▶ A grid approximation is a crude approach

▶ Gaussian quadrature is better

14 / 76

Numerical integration

▶ Numerical integration is only feasible for small p

▶ The Iteratively Nested Laplace Approximation (INLA) is an
even more sophisticated method

▶ INLA combines Gaussian approximations with numerical
integration

▶ This works well if most of the parameters are
approximately normal and only a few are non-Gaussian
and require numerical integration

15 / 76

Outline

▶ Deterministic methods
▶ MAP estimation
▶ Numerical integration
▶ Bayesian CLT
▶ INLA

▶ Markov Chain Monte Carlo
▶ Gibbs sampling
▶ Slice sampling
▶ Metropolis-Hastings sampling
▶ Hamiltonian Monte Carlo
▶ JAGS
▶ Convergence diagnostics

▶ ABC

16 / 76

Monte Carlo sampling

▶ Monte Carlo (MC) sampling is the predominant method of
Bayesian inference because it can be used for
high-dimensional models (i.e., with many parameters)

▶ The main idea is to approximate posterior summaries by
drawing samples from the posterior distribution, and then
using these samples to approximate posterior summaries
of interest

▶ This requires drawing samples from non-standard
distributions

▶ It also requires careful analysis to be sure the
approximation is sufficiently accurate

17 / 76

Monte Carlo sampling

▶ Notation: Let θ = (θ1, ..., θp) be the collection of all
parameters in the model

▶ Notation: Let Y = (Y1, ...,Yn) be the entire dataset

▶ The posterior f (θ|Y) is a distribution

▶ If θ(1), ..., θ(S) are samples from f (θ|Y), then the mean of
the S samples approximates the posterior mean

▶ This only provides approximations of the posterior
summaries of interest.

▶ But how to draw samples from some arbitrary distribution
p(θ|Y)?

18 / 76

Software optioms

▶ There are now many software options for performing MC
sampling

▶ There are SAS procs and R functions for particular
analyses (e.g., the function BLR for linear regression)

▶ There are also all-purpose programs that work for virtually
any user-specified model: OpenBUGS; JAGS; Proc
MCMC; STAN; INLA (not MC)

▶ We will use JAGS, but they are all similar

19 / 76

Gibbs sampling

▶ Gibbs sampling is attractive because it can sample from
high-dimensional posteriors

▶ The main idea is to break the problem of sampling from the
high-dimensional joint distribution into a series of samples
from low-dimensional conditional distributions

▶ Updates can also be done in blocks (groups of parameters)

▶ Because the low-dimensional updates are done in a loop,
samples are not independent

▶ The dependence turns out to be a Markov distribution,
leading to the name Markov chain Monte Carlo (MCMC)

20 / 76

MCMC for the Bayesian t test

▶ Say Yi ∼ Normal(µ, σ2) with µ ∼ Normal(0, σ2
0) and

σ2 ∼ InvGamma(a,b)

▶ We saw that if we knew either µ or σ2, we can sample from
the other parameter

▶ µ|σ2,Y ∼ Normal
[

nȲσ−2+µ0σ
−2
0

nσ−2+σ−2
0

, 1
nσ−2+σ−2

0

]

▶ σ2|µ,Y ∼ InvGamma
[n

2 + a, 1
2
∑n

i=1(Yi − µ)2 + b
]

▶ But how to draw from the joint distribution?

21 / 76

Gibbs sampling for the Gaussian model

▶ The full conditional (FC) distribution is the distribution of
one parameter taking all other as fixed and known

▶ FC1: µ|σ2,Y ∼ Normal
[

nȲσ−2+µ0σ
−2
0

nσ−2+σ−2
0

, 1
nσ−2+σ−2

0

]

▶ FC2: σ2|µ,Y ∼ InvGamma
[n

2 + a, 1
2
∑n

i−1(Yi − µ)2 + b
]

22 / 76

Gibbs sampling

▶ In the Gaussian model θ = (µ, σ2) so θ1 = µ and θ2 = σ2

▶ The algorithm begins by setting initial values for all
parameters, θ(0) = (θ

(0)
1 , ..., θ

(0)
p).

▶ Variables are then sampled one at a time from their full
conditional distributions,

p(θj |θ1, ..., θj−1, θj+1, ..., θp,Y)

▶ Rather than 1 p-dimensional joint sample, we make p
1-dimensional samples.

▶ The process is repeated until the required number of
samples have been generated.

23 / 76

Gibbs sampling

A Set initial value θ(0) = (θ
(0)
1 , ..., θ

(0)
p)

B For iteration t ,
FC1 Draw θ

(t)
1 |θ(t−1)

2 , ..., θ
(t−1)
p ,Y

FC2 Draw θ
(t)
2 |θ(t)1 , θ

(t−1)
3 , ..., θ

(t−1)
p ,Y

...

FCp Draw θ
(t)
p |θ(t)1 , ..., θ

(t)
p−1,Y

We repeat step B S times giving posterior draws

θ(1), ...,θ(S)

24 / 76

Why does this work?

▶ θ(0) isn’t a sample from the posterior, it is an arbitrarily
chosen initial value

▶ θ(1) likely isn’t from the posterior either. Its distribution
depends on θ(0)

▶ θ(2) likely isn’t from the posterior either. Its distribution
depends on θ(0) and θ(1)

▶ Theorem: For any initial values, the chain will eventually
converge to the posterior

▶ Theorem: If θ(s) is a sample from the posterior, then θ(s+1)

is too

25 / 76

Proof

26 / 76

Convergence

▶ We need to decide:
1. When has it converged?
2. When have we taken enough samples to approximate the

posterior?
▶ Once we decide the chain has converged at iteration T , we

discard the first T samples as “burn-in”

▶ We use the remaining S − T to approximate the posterior

▶ For example, the posterior mean (marginal over all other
parameters) of θj is

E(θj |Y) ≈
1

S − T

S∑
s=S−T+1

θ
(s)
j

27 / 76

Practice problem

▶ Implementing Gibbs sampling requires deriving the full
conditional distribution of each parameter

▶ Work out the full conditionals for λ and b for the following
model:

Y |λ,b ∼ Poisson(λ)
λ|b ∼ Gamma(1,b)
b ∼ Gamma(1,1)

28 / 76

Practice problem

Y |λ,b ∼ Poisson(λ), λ|b ∼ Gamma(1,b), b ∼ Gamma(1,1)

▶ The full conditional for λ is

p(λ|b,Y) ∝ f (Y , λ,b)
f (Y ,b)

∝ f (Y , λ,b)

∝ f (Y |λ,b)π(λ|b)π(b)
∝ f (Y |λ)π(λ|b)

∝
[
exp(−λ)λY

] [
exp(−bλ)λ1−1

]
∝ exp[−(b + 1)λ]λ(Y+1−1)

▶ Therefore, λ|b,Y ∼ Gamma(Y + 1,b + 1)

29 / 76

Practice problem

Y |λ,b ∼ Poisson(λ), λ|b ∼ Gamma(1,b), b ∼ Gamma(1,1)

▶ The full conditional for b is

p(λ|b,Y) ∝ f (Y , λ,b)
f (Y , λ)

∝ f (Y , λ,b)

∝ f (Y |λ)π(λ|b)π(b)
∝ π(λ|b)π(b)

∝
[
b1 exp(−bλ)

] [
exp(−b)b1−1

]
∝ exp[−(λ+ 1)b]b(2−1)

▶ Therefore, b|λ,Y ∼ Gamma(2, λ+ 1)

30 / 76

Non-conjugate priors sampling

▶ In Gibbs sampling each parameter is updated by sampling
from its full conditional distribution

▶ This is possible with conjugate priors

▶ However, if the prior is not conjugate it is not obvious how
to make a draw from the full conditional

▶ For example, if Y ∼ Normal(µ,1) and µ ∼ Beta(a,b) then

p(µ|Y) ∝ exp

[
−1

2
(Y − µ)2

]
µ(a−1)(1 − µ)b−1

▶ For some likelihoods there is no known conjugate prior,
e.g., logistic regression

▶ In these cases we can use slice or Metropolis sampling

31 / 76

Slice sampling

▶ Slice sampling introduces an auxiliary variable to apply
Gibbs sampling to non-conjugate priors

▶ Say θ is univariate and u is the auxiliary variable

▶ Consider the joint density function

g(θ,U) = I[0 < U < p(θ|Y)]

▶ The marginal density of θ is p(θ|Y)

▶ So if we make draws from (θ,U) and discard U, the draws
of θ will be draws from the desired posterior

32 / 76

Slice sampling

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

θ

P
os

te
rio

r
p(theta|Y)
U

33 / 76

Slice sampling

▶ Slice sampling is Gibbs sampling for (U, θ)

▶ The full conditional distribution of U is

U|θ,Y ∼ Uniform(0, f (θ|Y))

▶ The full conditional distribution of θ is

θ|U,Y ∼ Uniform on DU = {θ; f (θ|Y) > U}

▶ Updating θ requires solving for or approximating the
excursion set DU

34 / 76

Metropolis sampling

▶ Metropolis sampling is a version of rejection sampling

▶ Let θ∗j be the current value of the parameter being updated
and θ(j) be the current value of all other parameters

▶ You propose a random candidate based on the current
value, e.g.,

θc
j ∼ Normal(θ∗j , s

2
j)

▶ The candidate is accepted with probability

R = min

{
1,

p(θc
j |θ(j),Y)

p(θ∗j |θ(j),Y)

}

▶ If the candidate is not accepted then you simply retain the
previous value and move to the next step

35 / 76

Metropolis sampling

▶ The candidate standard deviation sj is a tuning parameter

▶ Ideally sj is tuned to give acceptance probability around
0.3-0.4

▶ If sj is too small:

▶ If sj is too large:

▶ Off-the-shelf programs have default values, and many
allow you to change the value if the results are
unsatisfactory

36 / 76

Metropolis-Hastings sampling

▶ Denote θc
j ∼ q(θ|θ∗) as the candidate distribution

▶ The candidate distribution is symmetric if

q(θ∗|θc
j) = q(θc

j |θ
∗)

▶ For example, if θc
j ∼ Normal(θ∗j , s

2
j) then

q(θc
j |θ

∗) =
1√
2πsj

exp

[
−
(θc

j − θ∗j)
2

2s2
j

]
= q(θ∗|θc

j).

37 / 76

Metropolis-Hastings sampling

▶ Metropolis-Hastings (MH) sampling generalizes Metropolis
sampling to allow for asymmetric candidate distributions

▶ For example, if θj ∈ [0,1] then a reasonable candidate is

θc
j |θ

∗
j ∼ Beta[10θ∗j ,10(1 − θ∗j)]

▶ Then q(θ∗j |θc
j) and q(θc

j |θ
∗) are both beta PDFs

▶ MH proceeds exactly like Metropolis except the
acceptance probability is

R = min

{
1,

p(θc
j |θ(j),Y)q(θ

∗
j |θc

j)

p(θ∗j |θ(j),Y)q(θ
c
j |θ∗j)

}

38 / 76

Metropolis-Hastings sampling

▶ What if we take the candidate distribution to be the full
conditional distribution

θc
j ∼ p(θc

j |θ(j),Y)

▶ What is the acceptance ratio?

p(θc
j |θ(j),Y)q(θ

∗
j |θc

j)

p(θ∗j |θ(j),Y)q(θ
c
j |θ∗j)

=
p(θc

j |θ(j),Y)p(θ
∗
j |θ(j),Y)

p(θ∗j |θ(j),Y)p(θ
c
j |θ(j),Y)

= 1

▶ What does this say about the relationship between Gibbs
and Metropolis Hastings sampling?

▶ Gibbs is a special case of MH with the full conditional as
the candidate

39 / 76

Variants

▶ You can combine Gibbs and Metropolis in the obvious way,
sampling directly from full conditional when possible and
Metropolis otherwise

▶ Adaptive MCMC varies the candidate distribution
throughout the chain

▶ If a group of parameters are highly correlated convergence
can be slow

▶ One way to improve Gibbs sampling is a block update

▶ For example, in linear regression might iterate between
sampling the block (β1, ..., βp) and σ2

▶ Blocked Metropolis is possible too

▶ For example, the candidate for (β1, ..., βp) could be a
multivariate normal

40 / 76

Posterior correlation leads to slow convergence

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

β1

β 2

● ●

●●

●●

●●

●●

β(0)
β(1)

β(2)

β(3)

41 / 76

Metropolis-adjusted Langevin algorithm (MALA)

▶ MALA sampling improves convergence by using the
posterior’s gradient g(θ) = ∇ log{p(θ|Y)} with j th element

gj(θ) =
∂

∂θj
log{p(θ|Y)} =

∂

∂θj
log{f (Y|θ)π(θ)}

▶ It is a special case of Metropolis-Hastings sampling and
approximates Langevin dynamics

▶ The candidate distribution is

θ∗ ∼ Normal (θ + τg(θ),2τΣ)

▶ The tuning parameter is τ ∈ (0,1)

▶ The candidate covariance matrix Σ could be approximately
the posterior covariance

42 / 76

Hamiltonian Monte Carlo (HMC)

▶ HMC is (sort of) a multi-step extension of MALA

▶ HMC is a discrete approximation to Hamiltonian dynamics

▶ The algorithm has two tuning parameters, the number of
steps L and the step size τ

▶ It also introduces momentum variable z = (z1, ..., zp)

43 / 76

HMC proposal distribution

▶ For MCMC iteration s, set θ∗ = θ(s−1) and sample
z ∼ Normal(0, Ip) and set z∗ = z

▶ Repeat the following steps L times
1 Set z∗ = z∗ + τg(θ∗)/2
2 Set θ∗ = θ∗ + τz∗
3 Set z∗ = z∗ + τg(θ∗)/2

▶ The final of θ∗ is the candidate for the Metropolis step

▶ The MH acceptance probability is min{1,R} for

R =
p(θ∗|Y)

p(θ(s−1)|Y)

exp(−
∑p

j=1 z∗2
j /2)

exp(−
∑p

j=1 z2
j /2)

.

44 / 76

HMC proposal distribution

▶ One option is to set L at a moderate value, say L = 20, and
turn τ to give acceptance rate ≈ 0.8

▶ Alternatively, the No-U-Turns Sampler (NUTS) can be used
to select L automatically

▶ Very loosely speaking, if you run HMC with huge L, it will
eventually start doing loops around the posterior’s support

▶ NUTS uses a criteria to stop sampling when the chain goes
downhill, and then takes a random sample from the path

▶ This is implemented in STAN

45 / 76

Reversible jump MCMC

▶ Say there are J possible models: M1, ...,MJ

▶ Example, M1 is a multiple linear regression model and
M2 is a neural network

▶ Let θj denote the collection of parameters in Mj

▶ The θj need not have the same dimension or interpretation
across models

▶ RJMCMC computes posterior draws of the model
M ∈ {M1, ...,MJ} and the model parameters

46 / 76

Reversible jump MCMC

▶ It alternates between updating the parameters within a
model and the model

▶ The complicated step is updating the model, say
j ∈ {1, ..., J}

▶ In the Metropolis-Hastings step, you propose to move from
model j to model k

▶ You have the current value of θj , but you need to propose a
candidate for θk

▶ This step is difficult to tune, and the acceptance probability
has a complicated form

47 / 76

Summary

▶ With the combination of Gibbs and Metropolis-Hastings
sampling we can fit virtually any model

▶ In some cases Bayesian computing is actually preferable
to maximum likelihood analysis

▶ In most cases Bayesian computing is slower

▶ However, in the opinion of many it is worth the wait for
improved uncertainty quantification and interpretability

▶ In all cases it is important to carefully monitor convergence

48 / 76

Options for coding MCMC

▶ Writing your own code

▶ Bayesian options in SAS procedures

▶ R packages for specific models

▶ All-purpose software like JAGS, BUGS, PROC MCMC, and
STAN

49 / 76

Bayes in SAS procedures and R functions

▶ Here is a SAS proc

proc phreg data=VALung;
class PTherapy(ref=‘no‘) Cell(ref=‘large‘)
Therapy(ref=‘standard‘);
model Time*Status(0) = KPS Duration;
bayes seed=1 outpost=cout coeffprior=uniform
plots=density;

run;

▶ In R you can use BLR for linear regression, MCMClogit for
logistic regression, etc.

50 / 76

Why Just Another Gibbs Sampler (JAGS)?

▶ You can fit virtually any model

▶ You can call JAGS from R which allows for plotting and
data manipulation in R

▶ It runs on all platforms: LINUX, Mac, Windows

▶ There is a lot of help online

▶ R has many built in packages for convergence diagnostics

51 / 76

How does JAGS work?

▶ You specify the model by declaring the likelihood and priors

▶ JAGS then sets up the MCMC sampler, e.g., works out the
full conditional distributions for all parameters

▶ It returns MCMC samples in a matrix or array

▶ It also automatically produces posterior summaries like
means, credible sets, and convergence diagnostics

▶ User’s manual: http://blue.for.msu.edu/CSTAT_
13/jags_user_manual.pdf

52 / 76

http://blue.for.msu.edu/CSTAT_13/jags_user_manual.pdf
http://blue.for.msu.edu/CSTAT_13/jags_user_manual.pdf

Running JAGS from R has the following steps

1. Install JAGS: https://sourceforge.net/projects/
mcmc-jags/files/JAGS/4.x/Windows/

2. Download rjags from CRAN and load the library

3. Specify the model as a string

4. Compile the model using the function jags.model

5. Draw burn-in samples using the function update

6. Draw posterior samples using the function coda.samples

7. Inspect the results using the plot and summary functions

53 / 76

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/

Examples

▶ The course website has many example of Bayesian
analyses using JAGS

▶ There are also comparisons with other software

▶ For moderately-sized problems JAGS is competitive with
these methods

▶ For really big and/or complex analyses STAN is preferred

▶ JAGS is easier to code and so we will use it through the
course, but you should be familiar with other software

▶ Once you understand JAGS, switching to the others is
straightforward

54 / 76

Tuning the MCMC algoritm

▶ MCMC is beautiful because it can handle virtually any
statistical model and it is usually pretty easy to write
functional code

▶ However, for hard problems great care must be taken to
ensure that the algorithm has converged

▶ There are three main decisions:
▶ Selecting the initial values

▶ Determining if/when the chain(s) has converged

▶ Selecting the number of samples needed to approximate
the posterior

55 / 76

Initial values

▶ The algorithm will eventually converge no matter what
initial values you select

▶ However taking time to select good initial values will speed
up convergence

▶ It is important to try a few initial values to verify they all give
the same result

▶ Usually 3-5 separate chains is sufficient

▶ Option 1: Select good initial values using method of
moments or MLE

▶ Option 2: Purposely pick bad but different initial values for
each chain to check convergence

56 / 76

Convergence

▶ The first few samples are probably not draws from the
posterior distribution

▶ It can take hundreds or even thousands of iterations to
move from the initial values to the posterior

▶ When the sampler reaches the posterior this is called
convergence

▶ Samples before convergence are discard as burn-in

▶ After convergence the samples should not converge to a
single point!

▶ They should be draws from the posterior, and ideally look
like a caterpillar or bar code

57 / 76

Convergence in a few iterations

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration number

M
C

M
C

 s
am

pl
e

58 / 76

Convergence in a few hundred iterations

0 200 400 600 800 1000

−
2

0
2

4
6

Iteration number

M
C

M
C

 s
am

pl
e

59 / 76

This one never converged

0 200 400 600 800 1000

0
5

10
15

20

Iteration number

M
C

M
C

 s
am

pl
e

60 / 76

Convergence is questionable

0 200 400 600 800 1000

−
2

0
2

4

Iteration number

M
C

M
C

 s
am

pl
e

61 / 76

Convergence diagnostics

▶ So far we have visually inspected the chains for
convergence

▶ There are many formal diagnostics

▶ The CODA package in R has dozens of diagnostics

▶ Most give a measure of convergence for each parameter

▶ Checking convergence using these one-number
summaries is more efficient and objective than visual
inspection

62 / 76

Convergence diagnostics

▶ Did my chains converge?

▶ Geweke

▶ Gelman-Rubin

▶ Did I run the sampler long enough after convergence?

▶ Effective sample size

▶ Standard errors for the posterior mean estimate

63 / 76

Examples

▶ The JAGS function coda.samples returns sample is the
format that can be passed to the CODA function which
actually computes the diagnostics

▶ The course website uses CODA to access convergence for
a best-case and a worst-case scenario

64 / 76

Geweke diagnostic

▶ Compares the mean in the beginning of the chain with the
mean at the end of the chain

▶ Can we used for a single chain

▶ Done separately for each parameter

▶ The JAGS default is to compare the first 10% with the last
50%

▶ The test accounts for autocorrelation

▶ The test statistic is a z-score, so |Z | > 2 indicates poor
convergence

65 / 76

Gelman-Rubin statistic

▶ If we run multiple chains, we hope that all chains give
same result

▶ The Gelman-Rubin statistics measures agreement
between chains

▶ Is it essentially an ANOVA test of whether the chains have
the same mean

▶ It is scaled so that 1 is perfect and 1.1 is decent but not
great convergence

▶ JAGS plots the statistic over iteration

▶ When the statistic reaches one this indicates convergence

66 / 76

Autocorrelation

▶ Ideally the samples would be independent across iteration

▶ The autocorrelation function ρ(h) is the correlation
between samples h iterations apart

▶ JAGS plots the autocorrelation as a function of h

▶ Lower values are better, but if the chains are long enough
even large values can be OK

▶ Thinning: If autocorrelation is zero after lag h you can thin
the samples by h to achieve independence

▶ This is always less efficient than using all samples, but can
save memory

67 / 76

Effective sample size

▶ Highly correlated samples have less information than
independent samples

▶ Say S is the actual number of MCMC samples

▶ The effective samples size is

ESS =
S

1 + 2
∑∞

h=1 ρ(h)

▶ The correlated MCMC sample of length S has the same
information as ESS independent samples

▶ ESS should be at least a few thousand for all parameters

68 / 76

Standard errors of posterior mean estimates

▶ The sample mean of the MCMC draws is an estimate of
the posterior mean

▶ The standard error of this estimate as another diagnostic

▶ Assuming independence the standard error is

Naive SE =
s√
S

where s is the sample SD and S is the number of samples

▶ A more realistic standard error is

Times-series SE =
s√

ESS

69 / 76

What to do if the chains haven’t converged?

▶ Determining if chains have converged is not that difficult

▶ Improving converge is challenging

▶ We will discuss options in lab

▶ Hopefully we can get a list of 10 or so

70 / 76

Outline

▶ Deterministic methods
▶ MAP estimation
▶ Numerical integration
▶ Bayesian CLT
▶ INLA

▶ Markov Chain Monte Carlo
▶ Gibbs sampling
▶ Slice sampling
▶ Metropolis-Hastings sampling
▶ Hamiltonian Monte Carlo
▶ JAGS
▶ Convergence diagnostics

▶ ABC

71 / 76

Approximate Bayesian Computing (ABC)

▶ ABC is a clever trick for models from which it is easy to
simulate data but the likelihood is cumbersome

▶ For example, the SIR compartmental model involves
differential equation and so the likelihood is complicated

▶ ABC provides an approximate solution in this case

▶ It generally works well when model is easy to simulate
from and has a small number of parameters

72 / 76

Approximate Bayesian Computing (ABC)

Here is an exact way to sample from the posterior:

1. Sample candidate θ∗ from the prior

2. Simulate a dataset Y∗ given θ∗ of the same dimension of Y

3. If Y∗ = Y, retain the draw of θ, otherwise return to 1.

4. Repeat until the desired number of sample have been
collected

73 / 76

Approximate Bayesian Computing (ABC)

Proof:

74 / 76

Approximate Bayesian Computing (ABC)

▶ If Y is continuous, then Y∗ will never equal Y

▶ Instead you retain the sample if the discrepancy d(Y∗,Y) is
small

▶ Example: d(Y∗,Y) =
∑n

i=1(Y
∗
i − Yi)

2/n

▶ Often the discrepancy is a function of sufficient statistics

▶ Example: d(Y∗,Y) = |Ȳ ∗ − Ȳ |

▶ Example: d(Y∗,Y) = |Ȳ ∗ − Ȳ |+ |s∗ − s|

75 / 76

Approximate Bayesian Computing (ABC)

▶ The proportion of samples retained is small if the
discrepancy threshold is small or the prior is diffuse

▶ This make the method inefficient

▶ There are adaptive procedures to circumvent this

▶ You can also combine ABC and MCMC, although this is
complicated

76 / 76

