Jeffrey’s prior derivations

Contents

8

9

Proof of invariance under transformation
Binomial probability

Binomial odds

Poisson rate

Normal mean

Normal variance

Normal standard deviation

Normal mean and variance

Linear regression with unknown variance

10 Marginal distribution of a normal mean

11 Marginal posterior of the regression coefficients

10

11

13



1 Proof of invariance under transformation

Let v = g(f) be a transformation of the parameter 6. Below we show that directly putting a Jeffreys

prior (JP) on ~y is equivalent to placing a JP prior on # and then transforming to . This is the one-

dimensional case, with multiple parameters the same steps apply but with Jacobian matrices.
Defining [(Y'|0) = log[f(Y'|#)], the JP for 0 is

7T1(9) X 11(9) X \/—Ey|9 {%]

Similarly, the JP for -y is

m2(7) o V) o \/ vy |22,

To connect the two priors, write Z; () in terms of -y. The second-order chain rule gives
PUYIY) _ (PUYR)Y () (AR (o
gz d~? de dry do? )

The expected value with respect to f(Y|y) of second term is zero, since

By, [dl(Ylv)] By, [df(Ylv)/dv] _ / [df(Ylv)/dv] F(Y]y)dy :/df(Ylv)dY

dry f¥y) f¥) dry
and if we exchange integration and differentiation,
4 FORaY
dy

since [ f(Y|y)dY = 1. Returning to the information,

o= [(led(_}gv)> (3—3)2] =I(7) (2—5)2.

Therefore, if we start with a JP 71 on 6 and perform a change of variables to ~, we get prior

ra(7) o VI w)% = VI x m(7).

Thus shows that a JP prior on # and transforming to + is equivalent to placing a JP directly on ~.



2 Binomial probability
The model is Y'|# ~ Binomial(n, §). This gives log-likelihood
[(Y]0) = c+Ylog(d) + (n—Y)log(l —0)

for constant ¢ that does not depend on 6. The first derivative is

Y n-Y
/ Y - _

F(Y16) 6 1-46

and the second derivative is v v
n—
"ylo) = —— — ——.

(¥16) 02 (1 —0)2

This gives expected information (recalling E(Y'|0) = nf)
7(0) = —B["(v|o) = 20y nznb o n

2 (1-602 0 1-46

The JP is thus

() o< V/I(0) oc 6731 — )2 oc 012711 — 0)> !

and so 6 ~ Beta(1/2,1/2).
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3 Binomial odds

Say Y'|# ~ Binomial(n, §) but our primary interest is in the odds, v = 6/(1 — ¢) > 0. Solving for
0 gives 6 = /(1 + ~y). The model written in terms of 7 is Y|y ~ Binomial(n,~/(1+ v)). The JP
for « can be derived two ways.

(1) Using a change of variables: Since we know the JP for ¢ is a proper PDF and JPs are
invariant to transformation, we could simply use the JP for ¢ and the univariate change of variables
formula to arrive at the JP for . Using the change of variables formula (i.e., wikipedia), if § ~
Beta(a, b), then v = 6/(1 — ) follows a BetaPrime(a, b) distribution with PDF

['(a+0b)

") = Farmy T

Using a = b = 1/2 gives JP
() oy (14 y) 7

(2) Derivation from scratch: The log-likelihood is

(YY) = c+Ylog{v/(1+7)}+ (n—Y)log{l —~/(1+)}
= c+Ylog(y) —Ylog(l++v)—(n—Y)log(l+~)
= ¢+ Ylog(y) — nlog(1+7)

for constant c that does not depend on ~y. The derivatives are

Y n Y n

'Yl|y)=—-— and "(Y|y)=—— + . 6
(Ylvy) poll B (Ylv) R TR (6)

This gives expected information (recalling E(Y'|y) = ny/(1 + 7))

ny 1 n I+v—7 1 -2
Z(v)=—-E[I"(Y]y)] = - - =n =ny ' (1+7)"" (7
() =Bl =~ GraE = " 1+
The Jeffreys’ prior is thus

(7) o< VI(y) o214 ) ®)

and so, as using the change of variables formula, v ~ BetaPrime(1/2,1/2).



4 Poisson rate
The model is Y| ~ Poisson(#). This gives log-likelihood
[(Y0) = c+Ylog(d) — 0

for constant ¢ that does not depend on 6. The first derivative is

Y

and the second derivative is v

This gives expected information (recalling E(Y'|0) = 0)

7(0) = ~E[(VI0) = o =

92
The Jeffreys’ prior is thus

7(0) x VI(0) x 6712,

€))

(10)

(1)

(12)

(13)

This is an improper prior. It can be seen as the limiting distribution of the prior § ~ Gamma(1/2,b)

for b tending to zero.



5 Normal mean

The model is Y;|u £ Normal(p, 0?) with o known. This gives log-likelihood
1 < )
I(Y|p)=c— 55 ) Yi—n) (14)

202 4
=1

for constant c that does not depend on y. The first derivative is

n

1
V(Y In) = — D (Yi—p) (15)
i=1
and the second derivative is
(Y1) = —n/o®. (16)

This gives expected information Z (1) = —E [I”(Y |u)] = n/o?. The Jeffreys’ prior is thus

1/2
m(1) o VI () oc 1 (17)

and so 7(u) oc 1 for all p.



6 Normal variance

The model is Y;|v £ Normal(y, v) for known p. This gives log-likelihood
1V]0) = = log(u) = - 3 (Vi — ) 19)
v)=c— — - L
2 %W T, a

i=1
for constant c that does not depend on v. The first derivative is

n

1
Vo) = — & + — S (Vi — p)? 19
Y1) = =5, + 53 20 =) (19)
and the second derivative is
" _ n 1 - 2
Pl =55-3 ;:1 (Y; —p)”. (20)

This gives expected information (recalling E{(Y — p)?|v) = v})

I(v)=—-E[l"(Y|v)] = 52 + F(m)) =55 (21)
The Jeffreys’ prior is thus
1
m(v) x /I(v) x ot (22)

Typically we write v = o2 in which case 7(c?) oc 1/02.



7 Normal standard deviation

The model is Y;|o w Normal(p, o) for known p. This gives log-likelihood

UY]o) = c=nlog(o) = 55 > (Vi - p)’ (23)

n 1
I'Ye)=—+ =Y (Y;—p)? 24
(Vlo) = =7+ 5 (i = 4)
and the second derivative is
Pl = BN ) 25
(Vlo) = 25 = S D (- w)? 25)

i=1
This gives expected information (recalling E{(Y — p)?|c) = o?})

3

Z(0) = —E[I"(Y|o)] = —% + Sno?) = = (26)

The Jeffreys’ prior is thus

(0) & \/T(0) % @7

We now have JPs for the variance and standard deviation. Since the JP is invariant to transfor-
mation these should be equivalent. To see this, start with 7(o) above and transform to v = 2. The

prior for v is
dy/v

dv

do 1
R (X J—
dv o

1
(X_
VU

1
NG

1
X —,
v

(V) = 7, (0)

which is the JP for the variance, v.



8 Normal mean and variance

The model is Y; |y, v w Normal(p, v) (usually we write v = ¢2). This gives log-likelihood

n

(Y l,0) = ¢~ 3 log(v) — 5 S (¥~ o)

=1

for constant ¢ that does not depend on y or v. The first derivatives are

Y |p,v) 1 oY |p,v)  n 1 9
op ZO/; —#) and dv 20 22 (Yo = )"

i=1 i=1
The second-order derivatives are
(Y |p, v)
op?
PUY|pw,v)  n 1
ov? 2 8
DY |, v) 1

Oudv T 24 (¥i= ).

= —njv

Thus the expected information has elements

[O(Y|p,v) ]
L o]
[O21(Y |, v)] n 1 n
| O] 202 3 202
[OP1(Y |, v)]
Opdv

(28)

(29)

(30)

€1y

(32)

(33)

(34)

(35)

Therefore, Z(u,v) is diagonal with diagonal elements n/v and n/(2v?), so its determinent is

|Z(1,v)| = n?/(20°) and the JP is

71, v) o< A/Z(p,v) ox v,

(36)



9 Linear regression with unknown variance

The model is Y;|3, v w Normal(X;3, v). This gives log-likelihood

n

I(Y[8.0) = e = S log(0) — 5- S (Y~ X,

2

i=1

for constant ¢ that does not depend on 3 or v. The first derivatives are

olY|B,v) 1 u ‘ . B ol(Y |p,v) _ﬁ 1 u
—_;Z(YZ—XZ,B)X” and —— = + 53 Z:Y X,3)?

853' (%

=1

The second-order derivatives are

o’1(Y]B,v) -
— = = XX/ v
86,08 2 X!
B2(Y|B,v) n 1 2
o ~ w2 XH
i=1
O?1(Y|B,v) 1
— 1 = Y, — X,
0p;0v o2 ;( B)X;
This gives expected information has elements
[021(Y|B,v)] =
-E|————=| = Xi;j Xk /v
95,08 2 XXl
[O*1(Y|B,v)] n I
e | T T T T
- -
8@81}

Therefore, the (p + 1) x (p + 1) information matrix is

SR L

and its determinant is proportional to v~ (P*2)

7(B,v) < \/IZ(B,v) oxx v~ PFI/2,

, giving JP
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10 Marginal distribution of a normal mean

Assume Y; % Normal(yi, 0®) and Jeffreys® prior 7 (u, 0?) o< (0)~3/2. Letting Y = " | Vi /n and
62 =>%" (Y; —Y)?/n, we show that

wY ~t, (Y,6/v/n),
i.e., a Student ¢ distribution with location Y, scale o+/n and n degrees of freedom.

Denoting 7 = o2, the joint posterior is
-n Zzn: (Y; B M)Q —
p(p, TlY) o {T 2 exp {— o= {77}

> (Yi - u)z}

2T

—(n+1)/2—-1

X T exp [—

B
x 747t exp [——] ,
-

where A = (n+1)/2 and B = . (Y; — u)?/2. As a function of 7, the joint distribution

=1
resembles an InvGamma(A, B) PDF. Integrating over 7 gives

p(ulY) o / Py, T|bY )

~ / 7= A~Lexp(—B/7)dr

A
Féil) / FI?A)T_A_I exp(—B/T)dr
I'(A)
< &3
. —(nt1)/2
x D (Vi- u)2]

The marginal PDF is a quadratic function of y raised to the power —(n + 1)/2, suggesting that

11



the posterior is a t distribution with n degrees of freedom. Completing the square gives

> (Y= p)?

=1

n

n

n

zn:Yf - 2anYm+nu2
=1 =1

n

Y YR =2V

Li=1

ZY;Z/n—Y2+§_/2—2§7p+,u2

Li=1
SV (VP
Li=1

62+ (- 7V,

since 6% = Y1 (V;=Y)?/n =" Y?/n—Y? Inserting this expression back into the marginal

posterior gives

p(plY) o

This is Student’s t distribution with location parameter Y, scale parameter & /1/n, and n degrees

of freedom.

12



11 Marginal posterior of the regression coefficients

Assume Y|B3,0” ~ Normal(X3,0°I,) and Jeffreys’ prior m(3,07%) o (0%)7#/*7!. Letting B =
(XTX)'X"Y and 62 = (Y — XB3)T(Y — XB)/n, we show that

¥ ~1, {5601},

i.e., p-dimensional t-distribution with location vector 3, scale matrix 62(XTX)~! and n degrees of
freedom.

Denoting 7 = o2, the joint posterior is

1
p(B,7Y) o {T‘"/ ?exp {—2—(Y - XB)"(Y - Xﬁ)} } 7P/
T
B
oc 74 exp [——] ,
-
where A = (n + p)/2 and B = (Y — XB)7(Y — X3)/2. Marginalizing over o gives

p(BY) = /M@ﬂwm
F(A) BA A1 B
5 /F(A)T exp {—?1 dr
x B4
x [(Y-XB)T(Y-Xx8)] """,

The quadratic form is factored as
(Y-XB)T(Y-XB) = Y'Y-2Y'XB+p3"Wg3
— Y'Y-23 W3+ 3"W3
— Y'Y-3W3+3 W3-23 W3+ 38"W3
= no’+(B—B)"W(B-0)
where W = X7X and n&® = (Y — X3)"(Y — X3) = Y'Y — 3" WJ3. Therefore,
pBIY) o [(Y -XB)T(Y-Xg)] """

. ~ 71— (n+p)/
x [t + (- prwe-p)]

) )2
w-gFWW—ﬂﬂ

1
o {1+ )
no
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The marginal posterior of 3 is thus the p-dimensional t-distribution with location vector [3, scale
matrix 62(X”X)!, and n degrees of freedom.
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