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1 Proof of invariance under transformation
Let γ = g(θ) be a transformation of the parameter θ. Below we show that directly putting a Jeffreys
prior (JP) on γ is equivalent to placing a JP prior on θ and then transforming to γ. This is the one-
dimensional case, with multiple parameters the same steps apply but with Jacobian matrices.

Defining l(Y |θ) = log[f(Y |θ)], the JP for θ is

π1(θ) ∝
√
I1(θ) ∝

√
−EY |θ

[
d2l(Y |θ)

dθ2

]
.

Similarly, the JP for γ is

π2(γ) ∝
√
I2(γ) ∝

√
−EY |γ

[
d2l(Y |γ)

dγ2

]
.

To connect the two priors, write I1(θ) in terms of γ. The second-order chain rule gives

d2l(Y |θ)
dθ2

=

(
d2l(Y |γ)

dγ2

)(
dγ

dθ

)2

+

(
dl(Y |γ)

dγ

)(
d2γ

dθ2

)
.

The expected value with respect to f(Y |γ) of second term is zero, since

EY |γ

[
dl(Y |γ)

dγ

]
= EY |γ

[
df(Y |γ)/dγ
f(Y |γ)

]
=

∫ [
df(Y |γ)/dγ
f(Y |γ)

]
f(Y |γ)dY =

∫
df(Y |γ)

dγ
dY

and if we exchange integration and differentiation,

d
∫
f(Y |γ)dY
dγ

= 0

since
∫
f(Y |γ)dY = 1. Returning to the information,

I1(θ) = −E

[(
d2l(Y |γ)

dγ2

)(
dγ

dθ

)2
]

= I2(γ)

(
dγ

dθ

)2

.

Therefore, if we start with a JP π1 on θ and perform a change of variables to γ, we get prior

π3(γ) ∝
√

I1(γ)
dθ

dγ
=

√
I2(γ) ∝ π2(γ).

Thus shows that a JP prior on θ and transforming to γ is equivalent to placing a JP directly on γ.
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2 Binomial probability
The model is Y |θ ∼ Binomial(n, θ). This gives log-likelihood

l(Y |θ) = c+ Y log(θ) + (n− Y ) log(1− θ) (1)

for constant c that does not depend on θ. The first derivative is

l′(Y |θ) = Y

θ
− n− Y

1− θ
(2)

and the second derivative is
l′′(Y |θ) = −Y

θ2
− n− Y

(1− θ)2
. (3)

This gives expected information (recalling E(Y |θ) = nθ)

I(θ) = −E [l′′(Y |θ)] = nθ

θ2
+

n− nθ

(1− θ)2
=

n

θ
+

n

1− θ
=

n

θ(1− θ)
. (4)

The JP is thus
π(θ) ∝

√
I(θ) ∝ θ−1/2(1− θ)−1/2 ∝ θ1/2−1(1− θ)1/2−1 (5)

and so θ ∼ Beta(1/2, 1/2).
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3 Binomial odds
Say Y |θ ∼ Binomial(n, θ) but our primary interest is in the odds, γ = θ/(1− θ) > 0. Solving for
θ gives θ = γ/(1 + γ). The model written in terms of γ is Y |γ ∼ Binomial(n, γ/(1 + γ)). The JP
for γ can be derived two ways.

(1) Using a change of variables: Since we know the JP for θ is a proper PDF and JPs are
invariant to transformation, we could simply use the JP for θ and the univariate change of variables
formula to arrive at the JP for γ. Using the change of variables formula (i.e., wikipedia), if θ ∼
Beta(a, b), then γ = θ/(1− θ) follows a BetaPrime(a, b) distribution with PDF

π(γ) =
Γ(a+ b)

Γ(a)Γ(b)
γa−1(1 + γ)−a−b.

Using a = b = 1/2 gives JP
π(γ) ∝ γ−1/2(1 + γ)−1.

(2) Derivation from scratch: The log-likelihood is

l(Y |γ) = c+ Y log{γ/(1 + γ)}+ (n− Y ) log{1− γ/(1 + γ)}
= c+ Y log(γ)− Y log(1 + γ)− (n− Y ) log(1 + γ)

= c+ Y log(γ)− n log(1 + γ)

for constant c that does not depend on γ. The derivatives are

l′(Y |γ) = Y

γ
− n

1 + γ
and l′′(Y |γ) = − Y

γ2
+

n

(1 + γ)2
. (6)

This gives expected information (recalling E(Y |γ) = nγ/(1 + γ))

I(γ) = −E [l′′(Y |γ)] = nγ

1 + γ

1

γ2
− n

(1 + γ)2
= n

1 + γ − γ

γ(1− γ)2
= nγ−1(1 + γ)−2. (7)

The Jeffreys’ prior is thus
π(γ) ∝

√
I(γ) ∝ γ−1/2(1 + γ)−1 (8)

and so, as using the change of variables formula, γ ∼ BetaPrime(1/2, 1/2).
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4 Poisson rate
The model is Y |θ ∼ Poisson(θ). This gives log-likelihood

l(Y |θ) = c+ Y log(θ)− θ (9)

for constant c that does not depend on θ. The first derivative is

l′(Y |θ) = Y

θ
− 1 (10)

and the second derivative is
l′′(Y |θ) = −Y

θ2
. (11)

This gives expected information (recalling E(Y |θ) = θ)

I(θ) = −E [l′′(Y |θ)] = θ

θ2
=

1

θ
. (12)

The Jeffreys’ prior is thus
π(θ) ∝

√
I(θ) ∝ θ−1/2. (13)

This is an improper prior. It can be seen as the limiting distribution of the prior θ ∼ Gamma(1/2, b)
for b tending to zero.
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5 Normal mean
The model is Yi|µ

iid∼ Normal(µ, σ2) with σ known. This gives log-likelihood

l(Y |µ) = c− 1

2σ2

n∑
i=1

(Yi − µ)2 (14)

for constant c that does not depend on µ. The first derivative is

l′(Y |µ) = 1

σ2

n∑
i=1

(Yi − µ) (15)

and the second derivative is
l′′(Y |µ) = −n/σ2. (16)

This gives expected information I(µ) = −E [l′′(Y |µ)] = n/σ2. The Jeffreys’ prior is thus

π(µ) ∝
√
I(µ) ∝ n1/2

σ
∝ 1 (17)

and so π(µ) ∝ 1 for all µ.
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6 Normal variance
The model is Yi|v

iid∼ Normal(µ, v) for known µ. This gives log-likelihood

l(Y |v) = c− n

2
log(v)− 1

2v

n∑
i=1

(Yi − µ)2 (18)

for constant c that does not depend on v. The first derivative is

l′(Y |v) = − n

2v
+

1

2v2

n∑
i=1

(Yi − µ)2 (19)

and the second derivative is

l′′(Y |v) = n

2v2
− 1

v3

n∑
i=1

(Yi − µ)2. (20)

This gives expected information (recalling E{(Y − µ)2|v) = v})

I(v) = −E [l′′(Y |v)] = − n

2v2
+

1

v3
(nv) =

n

2v2
. (21)

The Jeffreys’ prior is thus

π(v) ∝
√

I(v) ∝ 1

v
. (22)

Typically we write v = σ2 in which case π(σ2) ∝ 1/σ2.
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7 Normal standard deviation
The model is Yi|σ

iid∼ Normal(µ, σ2) for known µ. This gives log-likelihood

l(Y |σ) = c− n log(σ)− 1

2σ2

n∑
i=1

(Yi − µ)2 (23)

for constant c that does not depend on σ. The first derivative is

l′(Y |σ) = −n

σ
+

1

σ3

n∑
i=1

(Yi − µ)2 (24)

and the second derivative is

l′′(Y |σ) = n

σ2
− 3

σ4

n∑
i=1

(Yi − µ)2. (25)

This gives expected information (recalling E{(Y − µ)2|σ) = σ2})

I(σ) = −E [l′′(Y |σ)] = − n

σ2
+

3

σ4
(nσ2) =

2n

σ2
. (26)

The Jeffreys’ prior is thus

π(σ) ∝
√

I(σ) ∝ 1

σ
. (27)

We now have JPs for the variance and standard deviation. Since the JP is invariant to transfor-
mation these should be equivalent. To see this, start with π(σ) above and transform to v = σ2. The
prior for v is

πv(v) = πσ(σ)

∣∣∣∣dσdv
∣∣∣∣ ∝ 1

σ

∣∣∣∣d√v

dv

∣∣∣∣ ∝ 1√
v

∣∣∣∣ 1√
v

∣∣∣∣ ∝ 1

v
,

which is the JP for the variance, v.

8



8 Normal mean and variance
The model is Yi|µ, v

iid∼ Normal(µ, v) (usually we write v = σ2). This gives log-likelihood

l(Y |µ, σ) = c− n

2
log(v)− 1

2v

n∑
i=1

(Yi − µ)2 (28)

for constant c that does not depend on µ or v. The first derivatives are

∂l(Y |µ, v)
∂µ

=
1

v

n∑
i=1

(Yi − µ) and
∂l(Y |µ, v)

∂v
= − n

2v
+

1

2v2

n∑
i=1

(Yi − µ)2. (29)

The second-order derivatives are

∂2l(Y |µ, v)
∂µ2

= −n/v (30)

∂2l(Y |µ, v)
∂v2

=
n

2v2
− 1

v3

n∑
i=1

(Yi − µ)2 (31)

∂2l(Y |µ, v)
∂µ∂v

= − 1

v2

n∑
i=1

(Yi − µ). (32)

Thus the expected information has elements

−E
[
∂2l(Y |µ, v)

∂µ2

]
= n/v (33)

−E
[
∂2l(Y |µ, v)

∂v2

]
= − n

2v2
+

1

v3
nv =

n

2v2
(34)

−E
[
∂2l(Y |µ, v)

∂µ∂v

]
= 0. (35)

Therefore, I(µ, v) is diagonal with diagonal elements n/v and n/(2v2), so its determinent is
|I(µ, v)| = n2/(2v3) and the JP is

π(µ, v) ∝
√

I(µ, v) ∝ v−3/2. (36)
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9 Linear regression with unknown variance

The model is Yi|β, v
iid∼ Normal(Xiβ, v). This gives log-likelihood

l(Y|β, v) = c− n

2
log(v)− 1

2v

n∑
i=1

(Yi − Xiβ)
2 (37)

for constant c that does not depend on β or v. The first derivatives are

∂l(Y|β, v)
∂βj

=
1

v

n∑
i=1

(Yi − Xiβ)Xij and
∂l(Y |µ, v)

∂v
= − n

2v
+

1

2v2

n∑
i=1

(Yi − Xiβ)
2. (38)

The second-order derivatives are

∂2l(Y |β, v)
∂βj∂βk

= −
n∑

i=1

XijXik/v (39)

∂2l(Y |β, v)
∂v2

=
n

2v2
− 1

v3

n∑
i=1

(Yi − Xiβ)
2 (40)

∂2l(Y |β, v)
∂βj∂v

= − 1

σ2

n∑
i=1

(Yi − Xiβ)Xij. (41)

This gives expected information has elements

−E
[
∂2l(Y |β, v)
∂βj∂βk

]
=

n∑
i=1

XijXik/v (42)

−E
[
∂2l(Y |β, v)

∂v2

]
= − n

2v2
+

1

v3
nv =

n

2v2
(43)

−E
[
∂2l(Y |β, v)

∂βj∂v

]
= 0. (44)

Therefore, the (p+ 1)× (p+ 1) information matrix is

I(µ, v) =
(∑n

i=1 XT
i Xi/v 0

0 2n/v2

)
and its determinant is proportional to v−(p+2), giving JP

π(β, v) ∝
√

I(β, v) ∝ v−(p+2)/2. (45)
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10 Marginal distribution of a normal mean

Assume Yi
iid∼ Normal(µ, σ2) and Jeffreys’ prior π(µ, σ2) ∝ (σ2)−3/2. Letting Ȳ =

∑n
i=1 Yi/n and

σ̂2 =
∑n

i=1(Yi − Ȳ )2/n, we show that

µ|Y ∼ tn
(
Ȳ , σ̂/

√
n
)
,

i.e., a Student t distribution with location Ȳ, scale σ̂
√
n and n degrees of freedom.

Denoting τ = σ2, the joint posterior is

p(µ, τ |Y) ∝
{
τ−n/2 exp

[
−
∑n

i=1(Yi − µ)2

2τ

]}{
τ−3/2

}
∝ τ−(n+1)/2−1 exp

[
−
∑n

i=1(Yi − µ)2

2τ

]
∝ τ−A−1 exp

[
−B

τ

]
,

where A = (n + 1)/2 and B =
∑n

i=1(Yi − µ)2/2. As a function of τ , the joint distribution
resembles an InvGamma(A,B) PDF. Integrating over τ gives

p(µ|Y) ∝
∫

p(µ, τ |bY )dτ

∝
∫

τ−A−1 exp(−B/τ)dτ

∝ Γ(A)

BA

∫
BA

Γ(A)
τ−A−1 exp(−B/τ)dτ

∝ Γ(A)

BA

∝

[
n∑

i=1

(Yi − µ)2

]−(n+1)/2

.

The marginal PDF is a quadratic function of µ raised to the power −(n+1)/2, suggesting that
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the posterior is a t distribution with n degrees of freedom. Completing the square gives

n∑
i=1

(Yi − µ)2 =
n∑

i=1

Y 2
i − 2

n∑
i=1

Yiµ+ nµ2

= n

[
n∑

i=1

Y 2
i /n− 2Ȳ µ+ µ2

]

= n

[
n∑

i=1

Y 2
i /n− Ȳ 2 + Ȳ 2 − 2Ȳ µ+ µ2

]

= n

[
n∑

i=1

Y 2
i /n− Ȳ 2 + (µ− Ȳ )2

]
= n

[
σ̂2 + (µ− Ȳ )2

]
,

since σ̂2 =
∑n

i=1(Yi− Ȳ )2/n =
∑n

i=1 Y
2
i /n− Ȳ 2. Inserting this expression back into the marginal

posterior gives

p(µ|Y) ∝

[
n∑

i=1

(Yi − µ)2

]−(n+1)/2

∝
[
σ̂2 + (µ− Ȳ )2

]−(n+1)/2

∝

[
1 +

1

n

(
µ− Ȳ

σ̂/
√
n

)2
]−(n+1)/2

.

This is Student’s t distribution with location parameter Ȳ , scale parameter σ̂/
√
n, and n degrees

of freedom.
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11 Marginal posterior of the regression coefficients

Assume Y|β, σ2 ∼ Normal(Xβ, σ2In) and Jeffreys’ prior π(β, σ2) ∝ (σ2)−p/2−1. Letting β̂ =
(XTX)−1XTY and σ̂2 = (Y − Xβ̂)T (Y − Xβ̂)/n, we show that

β|Y ∼ tn

{
β̂, σ̂2(XTX)−1

}
,

i.e., p-dimensional t-distribution with location vector β̂, scale matrix σ̂2(XTX)−1 and n degrees of
freedom.

Denoting τ = σ2, the joint posterior is

p(β, τ |Y) ∝
{
τ−n/2 exp

[
− 1

2τ
(Y − Xβ)T (Y − Xβ)

]}
τ−p/2−1

∝ τ−A−1 exp

[
−B

τ

]
,

where A = (n+ p)/2 and B = (Y − Xβ)T (Y − Xβ)/2. Marginalizing over σ2 gives

p(β|Y) =

∫
p(β, τ |Y)dτ

∝ Γ(A)

BA

∫
BA

Γ(A)
τ−A−1 exp

[
−B

τ

]
dτ

∝ B−A

∝
[
(Y − Xβ)T (Y − Xβ)

]−(n+p)/2
.

The quadratic form is factored as

(Y − Xβ)T (Y − Xβ) = YTY − 2YTXβ + βTWβ

= YTY − 2β̂
T

Wβ + βTWβ

= YTY − β̂
T

Wβ̂ + β̂
T

Wβ̂ − 2β̂
T

Wβ + βTWβ

= nσ̂2 + (β − β̂)TW(β − β̂)

where W = XTX and nσ̂2 = (Y − Xβ̂)T (Y − Xβ̂) = YTY − β̂
T

Wβ̂. Therefore,

p(β|Y) ∝
[
(Y − Xβ)T (Y − Xβ)

]−(n+p)/2

∝
[
nσ̂2 + (β − β̂)TW(β − β̂)

]−(n+p)/2

∝
[
1 +

1

nσ̂2
(β − β̂)TW(β − β̂)

]−(n+p)/2

.
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The marginal posterior of β is thus the p-dimensional t-distribution with location vector β̂, scale
matrix σ̂2(XTX)−1, and n degrees of freedom.
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