Jeffrey's prior derivations

Contents

1	Proof of invariance under transformation	2
2	Binomial probability	3
3	Binomial odds	4
4	Poisson rate	5
5	Normal mean	6
6	Normal variance	7
7	Normal standard deviation	8
8	Normal mean and variance	9
9	Linear regression with unknown variance	10
10	Marginal distribution of a normal mean	11
11	Marginal posterior of the regression coefficients	13

1 Proof of invariance under transformation

Let $\gamma = g(\theta)$ be a transformation of the parameter θ . Below we show that directly putting a Jeffreys prior (JP) on γ is equivalent to placing a JP prior on θ and then transforming to γ . This is the one-dimensional case, with multiple parameters the same steps apply but with Jacobian matrices.

Defining $l(Y|\theta) = \log[f(Y|\theta)]$, the JP for θ is

$$\pi_1(\theta) \propto \sqrt{\mathcal{I}_1(\theta)} \propto \sqrt{-\mathsf{E}_{Y|\theta} \left[\frac{d^2 l(Y|\theta)}{d\theta^2} \right]}.$$

Similarly, the JP for γ is

$$\pi_2(\gamma) \propto \sqrt{\mathcal{I}_2(\gamma)} \propto \sqrt{-\mathbb{E}_{Y|\gamma} \left[\frac{d^2 l(Y|\gamma)}{d\gamma^2} \right]}.$$

To connect the two priors, write $\mathcal{I}_1(\theta)$ in terms of γ . The second-order chain rule gives

$$\frac{d^2l(Y|\theta)}{d\theta^2} = \left(\frac{d^2l(Y|\gamma)}{d\gamma^2}\right) \left(\frac{d\gamma}{d\theta}\right)^2 + \left(\frac{dl(Y|\gamma)}{d\gamma}\right) \left(\frac{d^2\gamma}{d\theta^2}\right).$$

The expected value with respect to $f(Y|\gamma)$ of second term is zero, since

$$\mathbf{E}_{Y|\gamma} \left[\frac{dl(Y|\gamma)}{d\gamma} \right] = \mathbf{E}_{Y|\gamma} \left[\frac{df(Y|\gamma)/d\gamma}{f(Y|\gamma)} \right] = \int \left[\frac{df(Y|\gamma)/d\gamma}{f(Y|\gamma)} \right] f(Y|\gamma) dY = \int \frac{df(Y|\gamma)}{d\gamma} dY$$

and if we exchange integration and differentiation,

$$\frac{d\int f(Y|\gamma)dY}{d\gamma} = 0$$

since $\int f(Y|\gamma)dY = 1$. Returning to the information,

$$\mathcal{I}_1(\theta) = -\mathbb{E}\left[\left(\frac{d^2l(Y|\gamma)}{d\gamma^2}\right)\left(\frac{d\gamma}{d\theta}\right)^2\right] = \mathcal{I}_2(\gamma)\left(\frac{d\gamma}{d\theta}\right)^2.$$

Therefore, if we start with a JP π_1 on θ and perform a change of variables to γ , we get prior

$$\pi_3(\gamma) \propto \sqrt{\mathcal{I}_1(\gamma)} \frac{d\theta}{d\gamma} = \sqrt{\mathcal{I}_2(\gamma)} \propto \pi_2(\gamma).$$

Thus shows that a JP prior on θ and transforming to γ is equivalent to placing a JP directly on γ .

2 Binomial probability

The model is $Y|\theta \sim \text{Binomial}(n,\theta)$. This gives log-likelihood

$$l(Y|\theta) = c + Y\log(\theta) + (n - Y)\log(1 - \theta) \tag{1}$$

for constant c that does not depend on θ . The first derivative is

$$l'(Y|\theta) = \frac{Y}{\theta} - \frac{n-Y}{1-\theta} \tag{2}$$

and the second derivative is

$$l''(Y|\theta) = -\frac{Y}{\theta^2} - \frac{n-Y}{(1-\theta)^2}.$$
 (3)

This gives expected information (recalling $\mathrm{E}(Y|\theta)=n\theta$)

$$\mathcal{I}(\theta) = -\mathbf{E}\left[l''(Y|\theta)\right] = \frac{n\theta}{\theta^2} + \frac{n - n\theta}{(1 - \theta)^2} = \frac{n}{\theta} + \frac{n}{1 - \theta} = \frac{n}{\theta(1 - \theta)}.$$
 (4)

The JP is thus

$$\pi(\theta) \propto \sqrt{\mathcal{I}(\theta)} \propto \theta^{-1/2} (1-\theta)^{-1/2} \propto \theta^{1/2-1} (1-\theta)^{1/2-1}$$
 (5)

and so $\theta \sim \text{Beta}(1/2, 1/2)$.

3 Binomial odds

Say $Y|\theta \sim \text{Binomial}(n,\theta)$ but our primary interest is in the odds, $\gamma = \theta/(1-\theta) > 0$. Solving for θ gives $\theta = \gamma/(1+\gamma)$. The model written in terms of γ is $Y|\gamma \sim \text{Binomial}(n,\gamma/(1+\gamma))$. The JP for γ can be derived two ways.

(1) Using a change of variables: Since we know the JP for θ is a proper PDF and JPs are invariant to transformation, we could simply use the JP for θ and the univariate change of variables formula to arrive at the JP for γ . Using the change of variables formula (i.e., wikipedia), if $\theta \sim \text{Beta}(a,b)$, then $\gamma = \theta/(1-\theta)$ follows a BetaPrime(a,b) distribution with PDF

$$\pi(\gamma) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \gamma^{a-1} (1+\gamma)^{-a-b}.$$

Using a = b = 1/2 gives JP

$$\pi(\gamma) \propto \gamma^{-1/2} (1+\gamma)^{-1}$$
.

(2) **Derivation from scratch**: The log-likelihood is

$$l(Y|\gamma) = c + Y \log\{\gamma/(1+\gamma)\} + (n-Y) \log\{1 - \gamma/(1+\gamma)\}$$

= c + Y \log(\gamma) - Y \log(1+\gamma) - (n-Y) \log(1+\gamma)
= c + Y \log(\gamma) - n \log(1+\gamma)

for constant c that does not depend on γ . The derivatives are

$$l'(Y|\gamma) = \frac{Y}{\gamma} - \frac{n}{1+\gamma} \text{ and } l''(Y|\gamma) = -\frac{Y}{\gamma^2} + \frac{n}{(1+\gamma)^2}.$$
 (6)

This gives expected information (recalling $E(Y|\gamma) = n\gamma/(1+\gamma)$)

$$\mathcal{I}(\gamma) = -E[l''(Y|\gamma)] = \frac{n\gamma}{1+\gamma} \frac{1}{\gamma^2} - \frac{n}{(1+\gamma)^2} = n \frac{1+\gamma-\gamma}{\gamma(1-\gamma)^2} = n\gamma^{-1}(1+\gamma)^{-2}.$$
 (7)

The Jeffreys' prior is thus

$$\pi(\gamma) \propto \sqrt{\mathcal{I}(\gamma)} \propto \gamma^{-1/2} (1+\gamma)^{-1}$$
 (8)

and so, as using the change of variables formula, $\gamma \sim \text{BetaPrime}(1/2, 1/2)$.

4 Poisson rate

The model is $Y|\theta \sim \text{Poisson}(\theta)$. This gives log-likelihood

$$l(Y|\theta) = c + Y\log(\theta) - \theta \tag{9}$$

for constant c that does not depend on θ . The first derivative is

$$l'(Y|\theta) = \frac{Y}{\theta} - 1 \tag{10}$$

and the second derivative is

$$l''(Y|\theta) = -\frac{Y}{\theta^2}. (11)$$

This gives expected information (recalling $E(Y|\theta) = \theta$)

$$\mathcal{I}(\theta) = -\mathbf{E}\left[l''(Y|\theta)\right] = \frac{\theta}{\theta^2} = \frac{1}{\theta}.$$
 (12)

The Jeffreys' prior is thus

$$\pi(\theta) \propto \sqrt{\mathcal{I}(\theta)} \propto \theta^{-1/2}.$$
 (13)

This is an improper prior. It can be seen as the limiting distribution of the prior $\theta \sim \text{Gamma}(1/2,b)$ for b tending to zero.

5 Normal mean

The model is $Y_i|\mu \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$ with σ known. This gives log-likelihood

$$l(Y|\mu) = c - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)^2$$
(14)

for constant c that does not depend on μ . The first derivative is

$$l'(Y|\mu) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)$$
 (15)

and the second derivative is

$$l''(Y|\mu) = -n/\sigma^2. \tag{16}$$

This gives expected information $\mathcal{I}(\mu) = -\mathrm{E}\left[l''(Y|\mu)\right] = n/\sigma^2$. The Jeffreys' prior is thus

$$\pi(\mu) \propto \sqrt{\mathcal{I}(\mu)} \propto \frac{n^{1/2}}{\sigma} \propto 1$$
 (17)

and so $\pi(\mu) \propto 1$ for all μ .

6 Normal variance

The model is $Y_i|v\stackrel{iid}{\sim} \operatorname{Normal}(\mu,v)$ for known $\mu.$ This gives log-likelihood

$$l(Y|v) = c - \frac{n}{2}\log(v) - \frac{1}{2v}\sum_{i=1}^{n}(Y_i - \mu)^2$$
(18)

for constant c that does not depend on v. The first derivative is

$$l'(Y|v) = -\frac{n}{2v} + \frac{1}{2v^2} \sum_{i=1}^{n} (Y_i - \mu)^2$$
(19)

and the second derivative is

$$l''(Y|v) = \frac{n}{2v^2} - \frac{1}{v^3} \sum_{i=1}^{n} (Y_i - \mu)^2.$$
 (20)

This gives expected information (recalling $\mathrm{E}\{(Y-\mu)^2|v)=v\}$)

$$\mathcal{I}(v) = -\mathbf{E}\left[l''(Y|v)\right] = -\frac{n}{2v^2} + \frac{1}{v^3}(nv) = \frac{n}{2v^2}.$$
 (21)

The Jeffreys' prior is thus

$$\pi(v) \propto \sqrt{\mathcal{I}(v)} \propto \frac{1}{v}.$$
 (22)

Typically we write $v=\sigma^2$ in which case $\pi(\sigma^2)\propto 1/\sigma^2$.

7 Normal standard deviation

The model is $Y_i | \sigma \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$ for known μ . This gives log-likelihood

$$l(Y|\sigma) = c - n\log(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)^2$$
 (23)

for constant c that does not depend on σ . The first derivative is

$$l'(Y|\sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (Y_i - \mu)^2$$
 (24)

and the second derivative is

$$l''(Y|\sigma) = \frac{n}{\sigma^2} - \frac{3}{\sigma^4} \sum_{i=1}^n (Y_i - \mu)^2.$$
 (25)

This gives expected information (recalling $E\{(Y - \mu)^2 | \sigma\} = \sigma^2\}$)

$$\mathcal{I}(\sigma) = -\mathbb{E}\left[l''(Y|\sigma)\right] = -\frac{n}{\sigma^2} + \frac{3}{\sigma^4}(n\sigma^2) = \frac{2n}{\sigma^2}.$$
 (26)

The Jeffreys' prior is thus

$$\pi(\sigma) \propto \sqrt{\mathcal{I}(\sigma)} \propto \frac{1}{\sigma}.$$
 (27)

We now have JPs for the variance and standard deviation. Since the JP is invariant to transformation these should be equivalent. To see this, start with $\pi(\sigma)$ above and transform to $v = \sigma^2$. The prior for v is

$$\pi_v(v) = \pi_\sigma(\sigma) \left| \frac{d\sigma}{dv} \right| \propto \frac{1}{\sigma} \left| \frac{d\sqrt{v}}{dv} \right| \propto \frac{1}{\sqrt{v}} \left| \frac{1}{\sqrt{v}} \right| \propto \frac{1}{v},$$

which is the JP for the variance, v.

8 Normal mean and variance

The model is $Y_i|\mu,v\stackrel{iid}{\sim} \mathrm{Normal}(\mu,v)$ (usually we write $v=\sigma^2$). This gives log-likelihood

$$l(Y|\mu,\sigma) = c - \frac{n}{2}\log(v) - \frac{1}{2v}\sum_{i=1}^{n}(Y_i - \mu)^2$$
(28)

for constant c that does not depend on μ or v. The first derivatives are

$$\frac{\partial l(Y|\mu,v)}{\partial \mu} = \frac{1}{v} \sum_{i=1}^{n} (Y_i - \mu) \quad \text{and} \quad \frac{\partial l(Y|\mu,v)}{\partial v} = -\frac{n}{2v} + \frac{1}{2v^2} \sum_{i=1}^{n} (Y_i - \mu)^2. \tag{29}$$

The second-order derivatives are

$$\frac{\partial^2 l(Y|\mu, v)}{\partial \mu^2} = -n/v \tag{30}$$

$$\frac{\partial^2 l(Y|\mu, v)}{\partial v^2} = \frac{n}{2v^2} - \frac{1}{v^3} \sum_{i=1}^n (Y_i - \mu)^2$$
 (31)

$$\frac{\partial^2 l(Y|\mu, v)}{\partial \mu \partial v} = -\frac{1}{v^2} \sum_{i=1}^n (Y_i - \mu). \tag{32}$$

Thus the expected information has elements

$$-E\left[\frac{\partial^2 l(Y|\mu, v)}{\partial \mu^2}\right] = n/v \tag{33}$$

$$-E\left[\frac{\partial^2 l(Y|\mu, v)}{\partial v^2}\right] = -\frac{n}{2v^2} + \frac{1}{v^3}nv = \frac{n}{2v^2}$$
(34)

$$-E\left[\frac{\partial^2 l(Y|\mu, v)}{\partial \mu \partial v}\right] = 0. (35)$$

Therefore, $\mathcal{I}(\mu,v)$ is diagonal with diagonal elements n/v and $n/(2v^2)$, so its determinent is $|\mathcal{I}(\mu,v)|=n^2/(2v^3)$ and the JP is

$$\pi(\mu, v) \propto \sqrt{\mathcal{I}(\mu, v)} \propto v^{-3/2}$$
. (36)

9 Linear regression with unknown variance

The model is $Y_i|\beta, v \stackrel{iid}{\sim} \text{Normal}(\mathbf{X}_i\beta, v)$. This gives log-likelihood

$$l(\mathbf{Y}|\boldsymbol{\beta}, v) = c - \frac{n}{2}\log(v) - \frac{1}{2v}\sum_{i=1}^{n}(Y_i - \mathbf{X}_i\boldsymbol{\beta})^2$$
(37)

for constant c that does not depend on β or v. The first derivatives are

$$\frac{\partial l(\mathbf{Y}|\boldsymbol{\beta}, v)}{\partial \beta_j} = \frac{1}{v} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta}) X_{ij} \quad \text{and} \quad \frac{\partial l(Y|\mu, v)}{\partial v} = -\frac{n}{2v} + \frac{1}{2v^2} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta})^2. \quad (38)$$

The second-order derivatives are

$$\frac{\partial^2 l(Y|\boldsymbol{\beta}, v)}{\partial \beta_j \partial \beta_k} = -\sum_{i=1}^n X_{ij} X_{ik} / v \tag{39}$$

$$\frac{\partial^2 l(Y|\boldsymbol{\beta}, v)}{\partial v^2} = \frac{n}{2v^2} - \frac{1}{v^3} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta})^2$$
(40)

$$\frac{\partial^2 l(Y|\beta, v)}{\partial \beta_j \partial v} = -\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \mathbf{X}_i \boldsymbol{\beta}) X_{ij}. \tag{41}$$

This gives expected information has elements

$$-E\left[\frac{\partial^2 l(Y|\boldsymbol{\beta}, v)}{\partial \beta_j \partial \beta_k}\right] = \sum_{i=1}^n X_{ij} X_{ik} / v$$
(42)

$$-\mathbf{E}\left[\frac{\partial^2 l(Y|\boldsymbol{\beta}, v)}{\partial v^2}\right] = -\frac{n}{2v^2} + \frac{1}{v^3}nv = \frac{n}{2v^2}$$
(43)

$$-\mathbf{E}\left[\frac{\partial^2 l(Y|\boldsymbol{\beta}, v)}{\partial \beta_i \partial v}\right] = 0. \tag{44}$$

Therefore, the $(p+1) \times (p+1)$ information matrix is

$$\mathcal{I}(\mu, v) = \begin{pmatrix} \sum_{i=1}^{n} \mathbf{X}_{i}^{T} \mathbf{X}_{i} / v & 0\\ 0 & 2n / v^{2} \end{pmatrix}$$

and its determinant is proportional to $v^{-(p+2)}$, giving JP

$$\pi(\boldsymbol{\beta}, v) \propto \sqrt{\mathcal{I}(\boldsymbol{\beta}, v)} \propto v^{-(p+2)/2}.$$
 (45)

10 Marginal distribution of a normal mean

Assume $Y_i \overset{iid}{\sim} \operatorname{Normal}(\mu, \sigma^2)$ and Jeffreys' prior $\pi(\mu, \sigma^2) \propto (\sigma^2)^{-3/2}$. Letting $\bar{Y} = \sum_{i=1}^n Y_i/n$ and $\hat{\sigma}^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2/n$, we show that

$$\mu | \mathbf{Y} \sim t_n \left(\bar{Y}, \hat{\sigma} / \sqrt{n} \right),$$

i.e., a Student t distribution with location $\bar{\mathbf{Y}}$, scale $\hat{\sigma}\sqrt{n}$ and n degrees of freedom.

Denoting $\tau = \sigma^2$, the joint posterior is

$$p(\mu, \tau | \mathbf{Y}) \propto \left\{ \tau^{-n/2} \exp \left[-\frac{\sum_{i=1}^{n} (Y_i - \mu)^2}{2\tau} \right] \right\} \left\{ \tau^{-3/2} \right\}$$
$$\propto \tau^{-(n+1)/2 - 1} \exp \left[-\frac{\sum_{i=1}^{n} (Y_i - \mu)^2}{2\tau} \right]$$
$$\propto \tau^{-A - 1} \exp \left[-\frac{B}{\tau} \right],$$

where A=(n+1)/2 and $B=\sum_{i=1}^n (Y_i-\mu)^2/2$. As a function of τ , the joint distribution resembles an InvGamma(A,B) PDF. Integrating over τ gives

$$p(\mu|\mathbf{Y}) \propto \int p(\mu, \tau|bY) d\tau$$

$$\propto \int \tau^{-A-1} \exp(-B/\tau) d\tau$$

$$\propto \frac{\Gamma(A)}{B^A} \int \frac{B^A}{\Gamma(A)} \tau^{-A-1} \exp(-B/\tau) d\tau$$

$$\propto \frac{\Gamma(A)}{B^A}$$

$$\propto \left[\sum_{i=1}^n (Y_i - \mu)^2\right]^{-(n+1)/2}.$$

The marginal PDF is a quadratic function of μ raised to the power -(n+1)/2, suggesting that

the posterior is a t distribution with n degrees of freedom. Completing the square gives

$$\sum_{i=1}^{n} (Y_i - \mu)^2 = \sum_{i=1}^{n} Y_i^2 - 2 \sum_{i=1}^{n} Y_i \mu + n\mu^2$$

$$= n \left[\sum_{i=1}^{n} Y_i^2 / n - 2\bar{Y}\mu + \mu^2 \right]$$

$$= n \left[\sum_{i=1}^{n} Y_i^2 / n - \bar{Y}^2 + \bar{Y}^2 - 2\bar{Y}\mu + \mu^2 \right]$$

$$= n \left[\sum_{i=1}^{n} Y_i^2 / n - \bar{Y}^2 + (\mu - \bar{Y})^2 \right]$$

$$= n \left[\hat{\sigma}^2 + (\mu - \bar{Y})^2 \right],$$

since $\hat{\sigma}^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2/n = \sum_{i=1}^n Y_i^2/n - \bar{Y}^2$. Inserting this expression back into the marginal posterior gives

$$p(\mu|\mathbf{Y}) \propto \left[\sum_{i=1}^{n} (Y_i - \mu)^2\right]^{-(n+1)/2}$$

$$\propto \left[\hat{\sigma}^2 + (\mu - \bar{Y})^2\right]^{-(n+1)/2}$$

$$\propto \left[1 + \frac{1}{n} \left(\frac{\mu - \bar{Y}}{\hat{\sigma}/\sqrt{n}}\right)^2\right]^{-(n+1)/2}.$$

This is Student's t distribution with location parameter \bar{Y} , scale parameter $\hat{\sigma}/\sqrt{n}$, and n degrees of freedom.

11 Marginal posterior of the regression coefficients

Assume $\mathbf{Y}|\boldsymbol{\beta}, \sigma^2 \sim \text{Normal}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$ and Jeffreys' prior $\pi(\boldsymbol{\beta}, \sigma^2) \propto (\sigma^2)^{-p/2-1}$. Letting $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$ and $\hat{\sigma}^2 = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})/n$, we show that

$$\boldsymbol{\beta} | \mathbf{Y} \sim t_n \left\{ \hat{\boldsymbol{\beta}}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1} \right\},$$

i.e., p-dimensional t-distribution with location vector $\hat{\boldsymbol{\beta}}$, scale matrix $\hat{\sigma}^2(\mathbf{X}^T\mathbf{X})^{-1}$ and n degrees of freedom.

Denoting $\tau = \sigma^2$, the joint posterior is

$$p(\boldsymbol{\beta}, \tau | \mathbf{Y}) \propto \left\{ \tau^{-n/2} \exp \left[-\frac{1}{2\tau} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \right] \right\} \tau^{-p/2 - 1}$$
$$\propto \tau^{-A - 1} \exp \left[-\frac{B}{\tau} \right],$$

where A=(n+p)/2 and $B=(\mathbf{Y}-\mathbf{X}\boldsymbol{\beta})^T(\mathbf{Y}-\mathbf{X}\boldsymbol{\beta})/2$. Marginalizing over σ^2 gives

$$p(\boldsymbol{\beta}|\mathbf{Y}) = \int p(\boldsymbol{\beta}, \tau|\mathbf{Y}) d\tau$$

$$\propto \frac{\Gamma(A)}{B^A} \int \frac{B^A}{\Gamma(A)} \tau^{-A-1} \exp\left[-\frac{B}{\tau}\right] d\tau$$

$$\propto B^{-A}$$

$$\propto \left[(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right]^{-(n+p)/2}.$$

The quadratic form is factored as

$$\begin{aligned} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) &= \mathbf{Y}^T \mathbf{Y} - 2\mathbf{Y}^T \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{W}\boldsymbol{\beta} \\ &= \mathbf{Y}^T \mathbf{Y} - 2\hat{\boldsymbol{\beta}}^T \mathbf{W}\boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{W}\boldsymbol{\beta} \\ &= \mathbf{Y}^T \mathbf{Y} - \hat{\boldsymbol{\beta}}^T \mathbf{W}\hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}^T \mathbf{W}\hat{\boldsymbol{\beta}} - 2\hat{\boldsymbol{\beta}}^T \mathbf{W}\boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{W}\boldsymbol{\beta} \\ &= n\hat{\sigma}^2 + (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{W}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \end{aligned}$$

where $\mathbf{W} = \mathbf{X}^T \mathbf{X}$ and $n\hat{\sigma}^2 = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{Y}^T \mathbf{Y} - \hat{\boldsymbol{\beta}}^T \mathbf{W}\hat{\boldsymbol{\beta}}$. Therefore,

$$p(\boldsymbol{\beta}|\mathbf{Y}) \propto \left[(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \right]^{-(n+p)/2}$$

$$\propto \left[n\hat{\sigma}^2 + (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{W} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \right]^{-(n+p)/2}$$

$$\propto \left[1 + \frac{1}{n\hat{\sigma}^2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T \mathbf{W} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \right]^{-(n+p)/2}.$$

The marginal posterior of β is thus the p-dimensional t-distribution with location vector $\hat{\boldsymbol{\beta}}$, scale matrix $\hat{\sigma}^2(\mathbf{X}^T\mathbf{X})^{-1}$, and n degrees of freedom.