ST740 - Assignment 2 - Due 10/4

This homework is due in class on Wednesday, 10/4. Include code used to produce the results. You may work in groups, but write up separate solutions.

1. Let $Y_{i j} \mid \theta_{i} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\theta_{i}, \sigma^{2}\right)$ and $\theta_{i} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(0, \sigma^{2} / m\right)$ for $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, n\}$. The variance $\sigma^{2}>0$ and prior scaling factor m are fixed and known but the random effects $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ are unknown. Let $\hat{\theta}=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{p}\right)$ be the posterior mean of $\theta, \theta^{*}=\left(\theta_{1}^{*}, \ldots, \theta_{p}^{*}\right)$ be the true value and the Euclidean discrepancy be $D\left(x, \theta^{*}\right)=\sum_{i=1}^{p}\left(x_{i}-\theta_{i}^{*}\right)^{2}$ for $x=\left(x_{1}, \ldots, x_{p}\right)$.
(a) Compute $\mathrm{E}\left[D\left(\hat{\theta}, \theta^{*}\right)\right]$ with respect to the distribution of the $Y_{i j}$ given $\theta=\theta^{*}$.
(b) Show that if p is fixed and $n \rightarrow \infty$, then $E\left[D\left(\hat{\theta}, \theta^{*}\right)\right] \rightarrow 0$.
(c) Give conditions ${ }^{1}$ on m, k and θ^{*} that ensure $E\left[D\left(\hat{\theta}, \theta^{*}\right)\right] \rightarrow 0$ as $p \rightarrow \infty$ with $n=p^{k}$.
2. Let Y_{i} be the observation in spatial region $i \in\{1, \ldots, n\}$. The observations are decomposed as $Y_{i}=\theta_{i}+\varepsilon_{i}$ for spatial process θ_{i} and error $\varepsilon_{i} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(0, \tau^{2}\right)$. The spatial terms are modelled using a conditionally autoregressive (CAR) model. The CAR model has PDF

$$
\pi\left(\theta_{1}, \ldots, \theta_{n} \mid \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}\left(\theta_{i}-\theta_{j}\right)^{2}\right],
$$

where $A_{i j}=1$ if regions i and j are adjacent and $A_{i j}=0$ otherwise. To complete the Bayesian model, we select priors $\sigma^{2}, \tau^{2} \sim \operatorname{InvGamma}(a, b)$.
(a) Using only the prior distribution, derive the full conditional distribution of θ_{i} given the other $n-1$ parameters, θ_{j} for $j \neq i$. Describe why this is a reasonable prior.
(b) Derive the univariate full conditional posterior distributions of θ_{i}, σ^{2} and τ^{2}.
(c) Download the boats data in R. The original image is 256×384 so $n=98,304$. You may work with the reduced image obtained by retaining every fourth column and every fourth row, leaving $n=6,144$.

```
library(imager)
plot(boats)
Y <- grayscale(boats)[,384:1,1,1]
image(Y,col=gray.colors(100))
y <- Y[1:nrow(y)%%4==2,] # Reduced image for speed
y <- y[,1:ncol(y)%%4==2]
image(y,col=gray.colors(100))
```

Apply Gibbs sampling to fit the CAR model to the boats data with $A_{i j}=1$ for pixels that share an edge (so most observations will have four neighbors) and $a=b=0.1$. Make trace plots of the variance components σ^{2} and τ^{2} and comment on convergence. Also, map the posterior mean and variance of $\left(\theta_{1}, \ldots, \theta_{n}\right)$ and comment on the fit to the data.

[^0]
[^0]: ${ }^{1}$ the weaker the conditions, the better your score will be!

