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1 Introduction

The current project uses data from “Fat, fibre and cancer risk in African Americans and rural Africans”

by O’Keefe et al. (2015). While the authors investigated the role of fat and fiber in cancer risks, we model the

baseline data (130 taxa from 112 samples) using Bayesian hierarchical models. The current report analyzes

this subset with a full model using a MCMC sampler that applies Gibbs and Metropolis sampling, introduces

two simplified models, compares the three models using WAIC, evaluates our final model, and proposes a

model for the full data to examine the association between diet change and gut microbiomes.

2 Model Overview

Our first model (M1) is provided below. Note that, to ensure that all values in 𝛼 are greater than zero,

we add 1 to the numerator and the number of taxa to the denominator, so the sum of the vector is 1.1

Y𝑖|𝜃𝑖, 𝑀𝑖
𝑖𝑛𝑑∼ Multinomial(𝑁𝑖, 𝜃𝑖), 𝜃𝑖|𝑀𝑖

𝑖𝑛𝑑∼ Dirichlet{𝑒𝑥𝑝(𝑀𝑖)𝛼}, 𝑀𝑖
𝑖𝑖𝑑∼ Normal(𝜇, 𝜎2)

𝜇 ∼ Normal(𝑚, 𝑠2), 𝜎2 ∼ InvGamma(𝑎, 𝑏),Y𝑖 = (𝑌1𝑖, … , 𝑌𝑡𝑖), 𝛼 =
(∑𝑛

𝑖=1 Y𝑖) + 1
(∑𝑛

𝑖=1 𝑁𝑖) + 𝑡
, 𝑡 = 130, 𝑛 = 112

As seen above, the parameter 𝛼 of the Dirichlet distribution is multiplied by 𝑒𝑀𝑖 . 𝑀𝑖 thus adjusts how

diffuse or concentrated the probabilities of different categories are. Our data has 130 taxa, but only a few

categories have higher probabilities. Figure 1 shows the probabilities of the 130 taxa from one random draw

of the Dirichlet distribution with 𝛼 as the parameters, which is quite concentrated, as well as 𝛼 multiplied

by three different values of 𝑒𝑀𝑖 , which becomes more diffuse as 𝑀𝑖 is around 3 and does not change much

for 𝑀𝑖 > 5. Through 𝑀𝑖, we can make the distribution of the probabilities more diffuse than in the first

plot, but we do not want 𝑀𝑖 to be too large, since the posterior distribution should be concentrated around

1Note we use the subscript 𝑡, instead of 𝑚, for the number of taxa, since 𝑚 is used as the prior mean of 𝜇.
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some microbiomes. Thus, we set the hyperparameters of 𝜇 at 𝑚 = 5, 𝑠2 = 4. For the prior of 𝜎2, we select

𝑠ℎ𝑎𝑝𝑒 = 𝑎 = 1, 𝑠𝑐𝑎𝑙𝑒 = 𝑏 = 1, so the variance of 𝑀𝑖 has high probabilities between 0 and 5, as shown in

the sixth plot of Figure 1.
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Figure 1: Different Values of 𝑀𝑖 on the Distribution of Probabilities and InvGamma(1,1)

The full conditional distributions of 𝜃𝑖, 𝜇, and 𝜎2 are provided below.2

𝜃𝑖|rest ∼ Dirichlet(Y𝑖 + 𝑒𝑀𝑖𝛼), 𝜇|rest ∼ N(
𝑠2 ∑𝑛

𝑖=1 𝑀𝑖 + 𝑚𝜎2

𝑛𝑠2 + 𝜎2 , 𝜎2𝑠2

𝑛𝑠2 + 𝜎2 )

𝜎2|rest ∼ InvGamma(𝑎 + 𝑛
2

,
∑𝑛

𝑖=1(𝑀𝑖 − 𝜇)2

2
+ 𝑏)

2.1 MCMC Sampler

OurMCMC sampler for M1 uses Gibbs sampling for 𝜃𝑖, 𝜇, and 𝜎2 andMetropolis sampling for𝑀𝑖. The

candidate distribution is set as normal centering with the previous draw of 𝑀𝑖. The initial values of standard

deviations are set as 1 for all 𝑀𝑖, and tuning of the standard deviation is used in the burn-in period to keep

2See the appendix for the derivations.
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the acceptance rates around 0.4. For Metropolis sampling, we only use the non-zero components of 𝜃𝑖 and

the corresponding components in 𝛼 to calculate the log-likelihood to avoid generating infinity or negative

infinity. For initial values, 𝜃𝑖 are set as the sample proportions for each sample, 𝑀𝑖 are set as 1, 𝜇 and 𝜎2

are set as 𝑚 = 4 and 𝑠2 = 4. Besides generating random draws of 𝜃𝑖, 𝜇, 𝜎2, and 𝑀𝑖, the MCMC sampler

calculates the log-likelihood with respect to the multinomial distribution for Watanabe–Akaike information

criterion (WAIC). 𝜃𝑖 are stored in a list of matrices, which will be used for posterior predictive checks for

model evaluation. Trace plots–eight of which are shown in Figure 2–suggest that all parameters quickly

converge, so these initial values are unlikely to change the results.
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Figure 2: Example Trace Plots

2.2 Two Alternative Models and Model Selection

The second model (M2) set 𝑀𝑖 = 0 for all 𝑖, thus the model becomes:

Y𝑖|𝜃𝑖
𝑖𝑛𝑑∼ Multinomial(𝑁𝑖, 𝜃𝑖), 𝜃𝑖

𝑖𝑖𝑑∼ Dirichlet(𝛼)
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The full conditional distribution of 𝜃𝑖 is then 𝜃𝑖|rest ∼ Dirichlet(Y𝑖 +𝛼). This model removes several layers

of the hierarchical model from M1, so now the probability vector of each of the samples is determined by

the sum of Y𝑖 and the same vector 𝛼. We call this model the pooled ratio model.

The third model (M3) set 𝑀𝑖 = ∞ for all 𝑖, thus 𝜃𝑖 = 𝛼. The model becomes:

Y𝑖
𝑖𝑖𝑑∼ Multinomial(𝑁𝑖, 𝛼)

This model further simplifies the previous two models, and the different samples are now assumed to be

distributed as the multinomial distribution with the parameter 𝛼. This model sets the probabilities of each

taxon, so we call this model the fixed ratio model.

We calculateWAIC for eachmodel, as shown in Table 1, and select the model with the lowestWAIC–M2,

the pooled ratio model–as our final model for later discussion.

Table 1: WAIC of the Models
M1 (Full hierarchical model) M2 (Pooled ratio) M3 (Fixed ratio)

WAIC 7.6166582 × 104 7.4972051 × 104 1.7055996 × 106

2.3 Model Evaluation: Posterior Preditive Checks

For our chosen model (pooled ratio model), we perform posterior predictive checks by generating a

130 × 112 matrix for each iteration and then comparing summary statistics of the observed data to the same

summary statistics of the 9000 generated datasets. Since the observed data is right-skewed with lots of values

close to zero and some large values and that the large values are more pertinent, we choose the 90% percentile

as a threshold value at 133. Figure 3 shows the five summary statistics: 25th percentile, percentage above

threshold, 25th percentile above the threshold, 90th percentile, and the maximum. The vertical lines show

the summary statistics of the observed data, while the histograms show the distributions of the summary

statistics from generated data. The plots show that, for percentages above threshold, 90th percentile, and

maximum, the vertical lines are somewhere in the middle of the distributions and the p-values are far from 0

and 1. For 25th percentile (overall) and 25th percentile above the threshold, the p-values are 0. The results

suggest that our pooled ratio model does a reasonable job making predictions for large values but misses

the smaller values. The inherent traits of the data–with most values close to zero and some values much

greater–seems a major challenge. If predicting large values is indeed an important task, we should consider
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applying variable selection methods to improve our modeling and predictions.
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Figure 3: Posterior Predictive Checks (plots 1-5) and △𝑗 for the 130 taxa (plot 6)

Lastly, we compare the microbiomes of the two nationalities, “AAM” and “AFR” by finding the value

△𝑗 = ( ∑
𝑖;𝑋𝑖=𝐴𝐴𝑀

𝜃𝑗𝑖/𝑛𝐴𝐴𝑀) − ( ∑
𝑖;𝑋𝑖=𝐴𝐹𝑅

𝜃𝑗𝑖/𝑛𝐴𝐹𝑅)

As shown in the sixth plot in Figure 3, △𝑗 are close to zero for most taxa but are quite far from zero for

a few taxa. (The minimum is -25.913 for taxon 97, with the name “Prevotella melaninogenica et rel.”)

Furthermore, out of the 130 taxa, 124 △𝑗 are negative, suggesting that 𝜃𝑖 tend to be smaller for African

Americans than for rural Africans. Both findings are worth further investigation.

2.4 Model Proposal for Full Dataset

Going beyond the baseline data, we propose a model for the full datasest to examine the association

between diet change and the makeup of microbiomes. The full dataset is a matrix with the dimension 130 ×

222. The 222 samples came from 38 individuals (21 African Americans and 17 rural Africans). We propose
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to include covariates in our proposed model: sex (female, male), nationality (AAM,AFR), bmi group (lean,

overweight, obese), and time point within group (1, 2). We are more interested in whether diet change is

associated with the change of gut microbiomes, so we do not propose to include two of the covariates–group

(DI: dietary intervention, ED: initial endoscopy days, HE: home environment) and time point (1, 2, 3, 4,

5, 6)–since they indicate finer distinctions than the periods before and after the diet change. Our proposed

hierarchical model is described below.

Y𝑖|𝜃𝑖
𝑖𝑛𝑑∼ Multinomial(𝑁𝑖, 𝜃𝑖), 𝜃𝑖

𝑖𝑛𝑑∼ Normal(𝛽0𝑖 + X𝑖𝛽𝑖, 𝜎2𝐼), 𝛽𝑖
𝑖𝑛𝑑∼ Normal(0, 𝜆2

𝑖 𝜏2)

𝜆𝑖 ∼ Half Cauchy(1), 𝜎2 ∼ InvGamma(𝑎, 𝑏), 𝑖 = 1, 2, … , 222

N𝑖 =
𝑡

∑
𝑗=1

𝑌𝑗𝑖, 𝛽𝑖 = (𝛽1𝑖, … , 𝛽135𝑖)𝑇,X𝑖,130×135 = [A𝑖 B𝑖] ,A𝑖 = I130×130

B𝑖 is a 130 × 5 matrix that has the same components for each row: 𝑥131𝑖, 𝑥132𝑖, 𝑥133𝑖, 𝑥134𝑖, 𝑥135𝑖 where

⎧{{{
⎨{{{⎩

𝑥131𝑖 = 1 if sex = female for ith sample, 0 otherwise

𝑥132𝑖 = 1 if nationality = AAM for ith sample, 0 otherwise

𝑥133𝑖 = 1 if bmi group = lean for ith sample, 0 otherwise

𝑥134𝑖 = 1 if bmi group = overweight for ith sample, 0 otherwise

𝑥135𝑖 = 1 if time point within group = 1 for ith sample, 0 otherwise

The horseshoe prior will shrink 𝛽𝑖 towards zero, and we could set a threshold and more closely examine the

taxa and covariates corresponding to 𝛽𝑗𝑖 greater than the threshold. Furthermore, 𝛽135𝑖 could be used for

inference; for example, if most of the 95% credible intervals of 𝛽135𝑖 do not include zero, we could conclude

that the diet change is associated with the changes of gut microbiomes.

3 Conclusion

It is no easy task to analyze data about 130 taxa of gut microbiomes to answer a seemingly straightforward

question: “Can diet change affect the makeup of microbiomes?” Nonetheless, by constructing three models

assuming the multinomial distribution on the baseline data, we were able to show the differences between the

two populations through △𝑗. We propose a model that incorporates covariates, including sex, bmi groups,

and diet change, as well as variable selection through the use of a shrinkage prior to hopefully zoom in on

the important taxa to clarify the associations between diet and microbiomes.
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4 Appendix: Derivation of Full Conditional Distributions

The full hierarchical model for M1 is:

[
𝑛

∏
𝑖=1

𝑓(Y𝑖|𝜃𝑖)][
𝑛

∏
𝑖=1

𝜋(𝜃𝑖|𝑀𝑖)][
𝑛

∏
𝑖=1

𝜋(𝑀𝑖|𝜇, 𝜎2)]𝜋(𝜇|𝑚, 𝑠2)𝜋(𝜎2|𝑎, 𝑏)

4.1 𝜃𝑖

𝑃(𝜃𝑖|rest) ∝ 𝑓(Y𝑖|𝜃𝑖)𝜋(𝜃𝑖|𝑀𝑖) ∝ (𝜃𝑦1𝑖
1𝑖 … 𝜃𝑦𝑡𝑖

𝑡𝑖 )(𝜃𝑒𝑀𝑖𝛼1−1
1𝑖 … 𝜃𝑒𝑀𝑖𝛼𝑡−1

𝑡𝑖 ) ∝ 𝜃𝑦1𝑖+𝑒𝑀𝑖𝛼1−1
1𝑖 … 𝜃𝑦𝑡𝑖+𝑒𝑀𝑖𝛼𝑡−1

𝑡𝑖

𝜃𝑖|rest ∼ Dirichlet(Y𝑖 + 𝑒𝑀𝑖𝛼)

4.2 𝜇

𝑃(𝜇|rest) ∝ [
𝑛

∏
𝑖=1

𝜋(𝑀𝑖|𝜇, 𝜎2)]𝜋(𝜇|𝑚, 𝑠2) ∝ [
𝑛

∏
𝑖=1

𝑒− (𝑀𝑖−𝜇)2

2𝜎2 ]𝑒− (𝜇−𝑚)2

2𝑠2 ∝ 𝑒− 𝑠2 ∑𝑛
𝑖=1(𝑀𝑖−𝜇)2+𝜎2(𝜇−𝑚)2

2𝜎2𝑠2

∝ 𝑒− 𝑠2 ∑𝑛
𝑖=1(𝜇2−2𝑀𝑖𝜇)+𝜎2𝜇2−2𝑚𝜎2𝜇

2𝜎2𝑠2 ∝ 𝑒− (𝑛𝑠2+𝜎2)𝜇2−2(𝑠2 ∑𝑛
𝑖=1 𝑀𝑖+𝑚𝜎2)𝜇

2𝜎2𝑠2 ∝ 𝑒− (𝜇−(𝑠2 ∑𝑛
𝑖=1 𝑀𝑖+𝑚𝜎2)/(𝑛𝑠2+𝜎2))2

2(𝜎2𝑠2/(𝑛𝑠2+𝜎2))

𝜇|rest ∼ N(
𝑠2 ∑𝑛

𝑖=1 𝑀𝑖 + 𝑚𝜎2

𝑛𝑠2 + 𝜎2 , 𝜎2𝑠2

𝑛𝑠2 + 𝜎2 )

4.3 𝜎2

𝑃(𝜎2|rest) ∝ [
𝑛

∏
𝑖=1

𝜋(𝑀𝑖|𝜇, 𝜎2)]𝜋(𝜎2|𝑎, 𝑏) ∝ [
𝑛

∏
𝑖=1

1√
𝜎2

𝑒− (𝑀𝑖−𝜇)2

2𝜎2 ][(𝜎2)−𝑎−1𝑒− 𝑏
𝜎2 ]

∝ (𝜎2)− 𝑛
2 𝑒− ∑𝑛

𝑖=1(𝑀𝑖−𝜇)2

2𝜎2 (𝜎2)−𝑎−1𝑒− 𝑏
𝜎2 ∝ (𝜎2)−(𝑎+ 𝑛

2 )−1𝑒−
1
2 ∑𝑛

𝑖=1(𝑀𝑖−𝜇)2+𝑏
𝜎2

𝜎2|rest ∼ InvGamma(𝑎 + 𝑛
2

,
∑𝑛

𝑖=1(𝑀𝑖 − 𝜇)2

2
+ 𝑏)
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5 Code

# a function to calculate sample proportions for each column separately
divide <- function(x){

sums <- colSums(x)
x2 <- x
for (i in 1:ncol(x)){
x2[,i] <- x[,i]/sums[i]

}
return(x2)

}
# log posterior function
log_post <- function(theta, M, alpha, mu, sigma2){

theta <- t(as.matrix(theta))
post <- ddirichlet(theta, exp(M)*alpha, log = T, sum.up = T) +
dnorm(M, mu, sqrt(sigma2), log = TRUE)

return(post)
}
# model 1
MCMC_diet1 <- function(Y, alpha, iters, burn, m, s2, a, b){

library(DirichletReg)
library(invgamma)
tik <- proc.time()
Ni <- colSums(Y)
N <- sum(Ni)
t <- dim(Y)[1]
n <- dim(Y)[2]
# thetas has iters matrices, each of dimension mxn
thetas <- list()
keepers <- matrix(0, nrow = iters, ncol = n+2)
colnames(keepers) <- c(paste0("M", 1:n), "mu", "sigma2")
loglike <- matrix(0, nrow = iters, ncol = n)
# record keeping
att <- acc <- rep(0, n)
MH <- rep(1, n)
# initial thetas set as sample proportion of each sample
thetas[[1]] <- divide(Y)
keepers[1,] <- c(rep(1, n), m, s2)
loglike[1,] <- 0
for (iter in 2:iters){

# Gibbs sampling
# update thetas
thetas[[iter]] <- matrix(0, t, n)
for (i in 1:n){

thetas[[iter]][,i] <- rdirichlet(1, t(Y[,i] + exp(keepers[iter-1, i])*alpha))
loglike[iter,i] <- dmultinom(Y[,i], prob = thetas[[iter]][,i], log = TRUE)

8



}
# update mu
meanz <- (s2*sum(keepers[iter-1, 1:n]) +

t*keepers[iter-1, n+2])/(n*s2+keepers[iter-1, n+2])
varz <- keepers[iter-1, n+2]*s2/(n*s2+keepers[iter-1, n+2])
keepers[iter, n+1] <- rnorm(1, meanz, sqrt(varz))
# update sigma2
newa <- a+n/2
newb <- sum((keepers[iter-1, 1:n]-keepers[iter, n+1])^2)/2+b
keepers[iter, n+2] <- rinvgamma(1, shape = newa, scale = newb)
# Metropolis for Mi
for (j in 1:n){

att[j] <- att[j]+1
can <- rnorm(1, mean = keepers[iter-1, j], sd = MH[j])
# only look at observations with non-zero thetas
# this method does not seem to work
thetaz <- thetas[[iter]][,j][which(thetas[[iter]][,j] != 0)]
alphaz <- alpha[which(thetas[[iter]][,j] != 0)]
curlp <- log_post(thetaz, keepers[iter-1, j],

alphaz, keepers[iter, n+1], keepers[iter, n+2])
canlp <- log_post(thetaz, can, alphaz, keepers[iter, n+1], keepers[iter, n+2])
R = canlp - curlp
if (!is.na(R)){

if (log(runif(1)) < R){
acc[j] <- acc[j]+1
keepers[iter, j] <- can

}
else {
keepers[iter, j] <- keepers[iter-1, j]

}
}

}
if(iter<burn){for(j in 1:length(att)){if(att[j]>50){

if(acc[j]/att[j] < 0.3){MH[j] <- MH[j]*0.8}
if(acc[j]/att[j] > 0.5){MH[j] <- MH[j]*1.2}
acc[j] <- att[j] <- 0

}}}
}

tok <- proc.time()
out <- list(theta = thetas, rest = keepers, acc_rate = acc/att,

time = tok - tik, loglike = loglike)
return(out)

}

waic_cal <- function(mat){
mi <- colMeans(mat)
vi <- apply(mat, 2, FUN = var)

9



waic <- -2*sum(mi)+2*sum(vi)
return(waic)

}
M1 <- MCMC_diet1(Y, alpha, 10000, 1000, 5, 4, 1, 1)
# model 2: pooled ratio
MCMC_diet2 <- function(Y, alpha, iters){

library(DirichletReg)
library(invgamma)
tik <- proc.time()
Ni <- colSums(Y)
N <- sum(Ni)
t <- dim(Y)[1]
n <- dim(Y)[2]
# thetas has iters matrices, each of dimension mxn
thetas <- list()
loglike <- matrix(0, nrow = iters, ncol = n)
# initial thetas set as sample proportion of each sample
thetas[[1]] <- divide(Y)
loglike[1,] <- 0
for (iter in 2:iters){

# Gibbs sampling
# update thetas
thetas[[iter]] <- matrix(0, t, n)
for (i in 1:n){

thetas[[iter]][,i] <- rdirichlet(1, t(Y[,i] + alpha))
loglike[iter,i] <- dmultinom(Y[,i], prob = thetas[[iter]][,i], log = TRUE)

}
}
tok <- proc.time()
out <- list(theta = thetas, time = tok - tik, loglike = loglike)
return(out)

}
M2 <- MCMC_diet2(Y, alpha, iters = 10000)
# model 3: fixed ratio
MCMC_diet3 <- function(Y, alpha){

tik <- proc.time()
Ni <- colSums(Y)
N <- sum(Ni)
t <- dim(Y)[1]
n <- dim(Y)[2]
loglike <- matrix(0, 1, ncol = n)
for (i in 1:n){

loglike[1, i] <- dmultinom(Y[,i], prob = alpha, log = T)
}
tok <- proc.time()
out <- list(time = tok - tik, loglike = loglike)

}
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M3 <- MCMC_diet3(Y, alpha)
# posterior predictive checks
PPC <- function(list, Y, iters, burn, thresh){

library(moments)
Ni <- colSums(Y)
n <- ncol(Y)
t <- nrow(Y)
D <- matrix(0, nrow = (iters-burn), ncol = 5)
colnames(D) <- c("q25", "pct_above_thresh","q25_above_thresh", "q90", "max")
for (iter in (burn+1):iters){
preds <- matrix(0, nrow = t, ncol = n)
for (i in 1:n){

preds[,i] <- Ni[i]*list[[iter]][,i]
}
D[iter-burn,] <- c(quantile(preds,0.25), mean(preds>thresh),

quantile(preds>thresh,0.25),quantile(preds,0.90),max(preds))
}
D <- as.data.frame(D)
return(D)

}
thresh <- quantile(c(Y), .9)
ppc2 <- PPC(M2$theta, Y, 10000, 1000, thresh)
strings <- c(Y)
sum_stats <- c(quantile(strings,.25), mean(strings>thresh),

quantile(strings[strings>thresh],0.25),quantile(strings,0.90),max(strings))
# rearrange the result so that each matrix is for 1 taxon
M2_mat <- list()
for (j in 1:130){

M2_mat[[j]] <- matrix(0, 112, iteration)
for (i in 1:iteration){
M2_mat[[j]][,i] <- M2$theta[[i]][j,]

}
}
# calculate delta j
delta <- rep(0, 130)
ind_AAM <- which(X == "AAM")
naam <- length(ind_AAM)
ind_AFR <- which(X == "AFR")
nafr <- length(ind_AFR)
for (i in 1:130){

meanz <- rowMeans(M2_mat[[i]])
delta[i] <- sum(meanz[ind_AAM]/naam - sum(meanz[ind_AFR])/nafr)

}
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